Sinclair ZX 8K ROM* Upgrade
Thomas J. Bent

9016 Flicker Place

Columbia

MD 21045

*Use of the 8K Operating system has been granted by Sinclair Research, thereby allowing this upgrade to be possible, I am grateful for their generosity.

Copyright 1981, Sinclair Research

Copyright 1985, T. Bent
February 24, 1985

Dear Sinclair Enthusiast,

Here is the eprom upgrade for your operating system. Version 10 is the current Issue. Several revisions have been made to both *fix* and improve the Sinclair BASIC operating system. I'm quite sure that all of the changes will delight you. You will probably forget that it is installed in a few short days. ALL of the software that would run before will still run, but you must have at least 16K RAM. The machine will initialize with 1K or 2K RAM, because of the partial decoding in the machine. Programs will not run though.

There are a few key changes that will remind you that you have indeed upgraded. The single most noticeable change is the automatic FAST edit. Now, whenever you enter an empty cursor, or key in a program line, the computer will jump into FAST mode and stay there until you input SLOW again. If your program requires SLOW mode to work properly, then remember to input SLOW in the direct mode before RUNning it. This alleviates that annoying "rolling screen" that can't decide which line should be listed first.

The second major change is the FAST initialization. Although the computer still only initializes 16K on power up, even a 64K NEW (POKE 16388,255 POKE 16389,255) will give a K cursor in the lower left corner in about 2 seconds. This routine will not adjust for your LACK of ram. If you only have 16K of ram, then don't poke ramtop up to 64K. I guarantee a crash. To run properly in 2K, POKE 16389,72 and NEW.

The Load routine has been changed slightly also. Before, if you had a bad load, the computer would jump into the middle of the initialization routine and reset the display file and stack pointers, but would leave clutter in memory (not really a problem) and not reset all of the operating system variables. Now, it jumps to the beginning of the NEW command and properly resets everything below RAMTOP. (RAMTOP is still a safe byte. NEW does not affect it.)

The CLS routine has been shortened and modified so as to not collapse the display file anymore. Before, every time you enter a BASIC line the computer would check to see if you had enough memory to create a machine stack and steal memory from the display file if needed. Then, after computation, the display would have to be regenerated. As you pushed the limits of your memory, you stood a good chance of crashing because of all the stack manipulation. Now, the computer won't take a line unless it can handle it properly. As you approach the limit of your memory you will find that the computer will not take a line with a number, although it will take other lines. There just isn't enough room to compute those big floating point numbers. Try the following listing on a 2K machine to see what I mean:

In the direct mode, DIM A(10)

1 REM

10 PRINT

20 PRINT 10
The problem of letting the display file overlap the 32K mark still exists, so if you have 64K beware! This problem exists because of the way that the Sinclair handles address line A15 (it is used as a sort of memory map line for the display). If you encroach on address 32768, you crash.

With a fixed size display file, another change is possible. SCROLL is now a very useful (and fast) routine. Before, if you scrolled your screen 22 times and then CLS, you could practically take a nap waiting to regain control of your Sinclair. Not anymore Now, Flight Simulator acts properly after a crash (literally of course).

As a sideline to having a fixed display file, all those ROM checks to see if the display location is available fall through immediately, thereby slightly speeding up the print routines, such as, TAB and AT.

Do you use a large database? Now you can DIMension large single arrays up to 47872 (BB00h). If you have a monitor program in the 8-16K block and need no BASIC lines, then you can go just over 48000 (BBFFh) with your array. You can't make an array too large for your memory though. You will get a very thoughtful error 4.

Two bugs that have been squished (in the TS1500 also) are the LPRINT and divide bugs. The divide bug is a problem when doing repetitive math work, such as matrix inversion, simultaneous equations, TAN (the computer generates the TAN function by calculating SIN/COS), etc. If you do this type of work, you can notice a reduction in the sum of the squares calculations (see more info on this in SWN vol 1). For an interesting demonstration of this bug, run the short test listing before you put in the new eprom, and put the print line inside the loop (it won't run very long). This will answer the question; "how much is one bit?"

The other obvious bug is the LPRINT bug. This annoying creature sneaks up on you and prints garbage on your printer regardless of the interface or printer that you are using. This one got by Sinclair Research because there was no printer available when they finalized the last issue of the ROM. (Don't you just love aftermarket support!) The problem occurs when you try to print variable numbers less than 0.1 and greater than IE-5. All of the leading zeroes come out as trash. To get around this problem you have had to convert your numbers to strings and LPRINT the strings. If you LET X = .0001, and then LPRINT X, you will see what I mean. This is no longer a problem.

A few cosmetic changes have been made in the character generator also. Because the display on your TV is probably not the best in the world, we have changed some of the bit patterns in order to improve the readability of a few of the characters. The Q, W, V, K and British Pound sign have been modified. The most noticeable change is the pound sign, which is now an apostrophe. Now, the Q, O and 0 are all distinct; and the indeterminate W, U and V are well defined. They will all print that way on the 2040 and ZX printer too. Although the bit patterns are in the eprom, not all of the characters are available to change. If you look in the appendix of your instruction manual, only the first 64 characters are at your disposal (up to Z). The rest of the graphics, inverse characters, tokens and composite characters ("" and **) are created by the Sinclair logic chip and the token tables in the ROM. However, any of the first 64 characters can be changed (by further changing the eprom).

The last and most unique change that has been made to date is the modified LPRINT command. This command is transparent until you invoke it. This routine Is called by RANDing an address in memory that you want to go to, POKE'ing 16393,1 (VERSN, which is the first byte saved in your program) and LPRINT'ing. For example:

10 RAND xxxxx (any address at which you have a working machine code subroutine: end with RET)

20 POKE 16393,1 (or any odd number)

30 LPRINT (or LPRINT X, LPRINT "HELLO")

This is very similar to USR, except that LPRINT has syntax checking and has the power to easily pass variables or text to your routines without a lot of overhead or searching for your data. It can also act just like a USR call, except that you need not return a value, such as, LET X = USR nnnn.

To turn off this command, POKE 16393,0 (or any even number). In machine code use FD3509, which is DEC (IY+9). You can also use INC (IY+9) or RES 0, (IY+9). It's your choice. This byte is saved with your program and RAND USR calls could present a problem. It is a good idea to initialize this in a subroutine when you use it. Entering a program line will not invoke this command, however a direct command without a line number will, so take care.

I am in the process of writing a driver that will link (hopefully) relocatable subroutines together and actually extend the Sinclair Basic operating system. I will let you know when I have something worthwhile. I have a few things in mind, but I am open for both suggestions and submissions. Unfortunately, my duties at SyncWare News prevent me from spending all the time on this project that I would like to put in on it. I do hope that you enjoy it though.

INSTALLATION INSTRUCTIONS:

BEWARE OF STATIC ELECTRICITY

Turn your computer over and remove the 5 small screws holding it together. Remove the back and unscrew the 2 screws holding the PC board to the top half. Gently turn the PC board over exposing the chip side of the board. (Be careful with the keyboard connector. Don't kink it.) Locate the ROM. It is the one that is too small for its socket. Pry it up with a long thin screwdriver. Insert the eprom and its socket in the ROM's place. Make sure that all the socket pins are seated properly before you firmly press the sockets together. (If you break a pin, believe me, soldering those little jumper wires is a real bear!) Close up your case, run it and forget it!

The circuit will fit well in a TS1000, but may not fit in a Z X81 depending on how old it is (due to a redesign of the board). A single socket may be used, but this requires soldering on the eprom. The Eprom may also be used in a 1500, but it again requires soldering on the eprom. It has come to my attention that there are some TS1000's that have the ROM soldered in place. Don't worry. Just clip it out with some small wire cutters. Get one of those blue, suction type desolders (Radio Shack) and clean up the board. You can solder in the socket circuit or get a 28 pin low profile socket and solder it in. Plug in the EPROM and run it! If you have any questions or trouble, drop me a line or call me in the evenings at 301-730-7187.

ZX81 EPROM UPGRADE CHANGES
VERSION 10 – THOMAS BENT
Based on Geoff Wearmouth’s incomplete disassembly of the ZX81 ROM – see http://www.wearmouth.demon.co.uk/zx81.htm which takes account of Stephen Agate’s improved ZX81 ROM version – see http://homepages.nildram.co.uk/~agate/ROMDifference.htm
This version shows changes required to incorporate Thomas Bent’s Upgrade (as amended by RWAP Services July 2009).

; ===
; Changes to the Assembly Listing of the Operating System of the ZX81 ROM

; ===
; -------------------------

; Last updated: 4th July 2009
; -------------------------

;

; Based on the original version of the "Improved"

; ZX81 ROM. The file can be modified to change the behaviour of the ROM

; when used in emulators although there is no spare space available.

;

; Changes by Thomas Bent are shown as prefixed TB: in the comments
;***

;** Part 1. RESTART ROUTINES AND TABLES **

;***

; -----------

; THE 'START'
; -----------

; All Z80 chips start at location zero.

; At start-up the Interrupt Mode is 0, ZX computers use Interrupt Mode 1.

; Interrupts are disabled .

;; START
L0000:
OUT
($FD),A
; Turn off the NMI generator if this ROM is

; running in ZX81 hardware. This does nothing

; if this ROM is running within an upgraded ZX80

LD
HL,$8000
; TB: Reflects a preset Ramtop (a la 1500)

JP
INIT
; TB: Jump to the proper INIT point

;--

; Following lines are now redundant.

;
LD
BC,$7FFF
; Set BC to the top of possible RAM.

; The higher unpopulated addresses are used for

; video generation.
;
JP
L03CB
; Jump forward to RAM-CHECK.

;--

; ------------------------

; THE 'IN-BYTE' SUBROUTINE

; ------------------------

;; IN-BYTE
L034C:
LD
C,$01
; prepare an eight counter 00000001.

;; NEXT-BIT
L034E:
LD
B,$00
; set counter to 256

;; BREAK-3
L0350:
LD
A,$7F
; read the keyboard row

IN
A,($FE)
; with the SPACE key.

OUT
($FF),A
; output signal to screen.

RRA

; test for SPACE pressed.

JR
NC,L03A2
; forward if so to BREAK-4

RLA

; reverse above rotation

RLA

; test tape bit.

JR
C,L0385
; forward if set to GET-BIT

DJNZ
L0350
; loop back to BREAK-3

POP
AF
; drop the return address.

CP
D
; ugh.

;; RESTART

L0361
JR
NC,BDLD
; TB: This change changes where you go in case of a

; Bad Load. This location was changes primarily to

; make more consecutive space in the INIT routine.

; However, it does make this routine function

; properly.

NOP

; TB: This clears the garbage left by the change from

; the 3 byte (jump) to the 2 byte (jump relative)

; command

;--

; Following line is now redundant
; L0361: JP NC,L03E5 ; jump forward to INITIAL if D is zero

 ; to reset the system

 ; if the tape signal has timed out for example

 ; if the tape is stopped. Not just a simple

 ; report as some system variables will have

 ; been overwritten.

;--

LD
H,D
; else transfer the start of name

LD
L,E
; to the HL register
; -------------------------

; THE 'NEW' COMMAND ROUTINE

; -------------------------

;

;

;; NEW
L03C3:
CALL
L02E7
; routine SET-FAST
BDLD:
LD
HL,($4004)
; TB: This INIT routine is completely re-written in

; order to both speed up and add other changes. BC

; is no longer used and therefore contains 0000 when

; not in use (instead of a number near ramtop)
; --------------------------------

; TB: THE NEW 'INITIALIZATION' ROUTINE

; --------------------------------

; The memory check is no longer present, so you must have at least 16K in order

; to function properly. A 2K machine will initialize and take BASIC commands,

; but as soon as you over-write your phantom stack pointer, good-bye. (This is

; due to partial decoding and repeating of memory segments in a 2K machine).

;

;; INITIAL

INIT:
LD
D,H

LD
E,L

L03CB:
LD
A,$3F

DEC
HL

CLER:
LD
(HL),$00

16K:
DEC
HL

CP
H

JR
NZ,CLER

EX
DE,HL

L03D5:
JR
MORE
LINE:
CALL
L0DA6
; This is the new location of LPRINT. First you

; check to see if Syntax is being tested, by checking

; BIT 7 of Flags. If you are entering a line, then

; you go to the regular LPRINT routine. If you enter

; a direct command or are running a program, then you

; test BIT 0 of VERSN. If it is 0 then you again

; jump to the LPRINT routine. If it is 1, then you

; get the number set by RAND and jump to that

; location. There is no commercial software other

; than the AERCO printer interface that uses this

; byte (VERSN) that I know of. They do not use BIT 0

; though.

CHEK:
JR
Z,NOST
FLAG:
BIT
0,(VERSN)
; code is $FDCB0946 – what is VERSN
NOST:
JP
Z,L0ACB
HEST:
LD
HL,(SEED)
; is SEED $4032? - code is $2A3240
JUMP:
JP
(HL)

;--

; The following lines are then all redundant

; LD BC,($4004) ; fetch value of system variable RAMTOP

; DEC BC ; point to last system byte.

; -----------------------

; THE 'RAM CHECK' ROUTINE

; -----------------------

;

;

;; RAM-CHECK
;L03CB: LD H,B ;

; LD L,C ;

; LD A,$3F ;

;; RAM-FILL
;L03CF: LD (HL),$02 ;

; DEC HL ;

; CP H ;

; JR NZ,L03CF ; to RAM-FILL

;; RAM-READ
;L03D5: AND A ;

; SBC HL,BC ;

; ADD HL,BC ;

; INC HL ;

; JR NC,L03E2 ; to SET-TOP

; DEC (HL) ;

; JR Z,L03E2 ; to SET-TOP

; DEC (HL) ;

; JR Z,L03D5 ; to RAM-READ

;; SET-TOP
; L03E2: LD ($4004),HL ; set system variable RAMTOP to first byte

 ; above the BASIC system area.

;L03E5: LD HL,($4004) ; fetch system variable RAMTOP.

;--

MORE:
LD
($4004),HL
; TB: End of routine

L03EA:
DEC HL
; point to last system byte.

LD
(HL),$3E
; make GO SUB end-marker $3E - too high for

; high order byte of line number.

; (was $3F on ZX80)

DEC
HL
; point to unimportant low-order byte.

LD
SP,HL
; and initialize the stack-pointer to this

; location.

DEC
HL
; point to first location on the machine stack

DEC
HL
; which will be filled by next CALL/PUSH.

LD
($4002),HL
; set the error stack pointer ERR_SP to

; the base of the now empty machine stack.

; Now set the I register so that the video hardware knows where to find the

; character set. This ROM only uses the character set when printing to

; the ZX Printer. The TV picture is formed by the external video hardware.

; Consider also, that this 8K ROM can be retro-fitted to the ZX80 instead of

; its original 4K ROM so the video hardware could be on the ZX80.

LD
A,$1E
; address for this ROM is $1E00.

LD
I,A
; set I register from A.

IM
1
; select Z80 Interrupt Mode 1.

LD
IY,$4000
; set IY to the start of RAM so that the

; system variables can be indexed.

LD
(IY+$3B),$40
; set CDFLAG 0100 0000. Bit 6 indicates

; Compute and Display required.

LD
HL,$407D
; The first location after System Variables –

; 16509 decimal.

LD
($400C),HL
; set system variable D_FILE to this value.
LILO:
LD
B,$19
; prepare minimal screen of 24 NEWLINEs

; following an initial NEWLINE.

;; LINE
L040A:
CALL
MAKE
; TB: Make the display. This routine was relocated in

; order to make more space above

L040D:
LD
($4010),HL
; set system variable VARS to next location

L0410:
CALL
CLER
;; N/L-ONLY
BASI:
CALL
L14AD
; TB: routine CURSOR-IN inserts the cursor and

; end-marker in the Edit Line also setting

; size of lower display to two lines.

CALL
L0F23
; TB: This one byte change serves a double purpose.

; It completes initialization in fast mode, and

; everytime you key in an empty cursor or enter a

; line you come back in FAST mode.

;--

; Following lines now redundant

;L0408: LD (HL),$76 ; insert NEWLINE (HALT instruction)

; INC HL ; point to next location.

; DJNZ L0408 ; loop back for all twenty five to LINE

; LD ($4010),HL ; set system variable VARS to next location

; CALL L149A ; routine CLEAR sets $80 end-marker and the

 ; dynamic memory pointers E_LINE, STKBOT and

 ; STKEND.

;; N/L-ONLY
;L0413: CALL L14AD ; routine CURSOR-IN inserts the cursor and

 ; end-marker in the Edit Line also setting

 ; size of lower display to two lines.

; CALL L0207 ; routine SLOW/FAST selects COMPUTE and DISPLAY

;--

; -------------------------

; THE 'CLS' COMMAND ROUTINE

; -------------------------

;

;

; TB routine truncates the CLS routine to make more space for the SCROLL

; routine. It no longer collapses the display for any reason. Throughout

; each of the display and pointer setting routines, there are tests to see if

; room is available. Since there always is, all of the tests fall through and

; the machine runs slightly (though not noticeably) faster.

;; CLS
L0A2A:
LD
B,$18
;

;; B-LINES
L0A2C:
RES
1,(IY+$01)
; sv FLAGS - Signal printer not in use

OLLN:
LD
C,$21
;

PUSH
BC
;

FULL:
CALL
L0918
; routine LOC-ADDR

POP
BC
;

; Start of new TB: routine

PLAY:
SET
7,(SPOSL)
; - code for this is FDCB3AFE
L0A3B:
XOR
A

CALL
L07F5
; CALL PRINT_SP

LD
HL,($4039)
; sv POSN_x

LD
A,L
;

OR
H

AND
$7E

JR
NZ,L0A3B
DONE:
JP
L0918
SCRL:
LD
B,20
; this is the last part of the SCROLL routine. It

; does what the old routine did not. It pads out the

; line with blanks

PT2-:
XOR
A

L0A4E:
DEC
HL

LD
(HL),A

DJNZ
L0A4E

LD
BC,$0321
; This value sets the print position to the lower

; left, the same as “PRINT AT 21,0;” (LD BC,2100 and

; jump to the print at routine), but since the print

; at routine leaves 0321 in BC, why not bypass it and

; speed up the routine that much more?

JR
DONE
MAKE:
LD
(HL),$76
; This is the create an empty screen routine. It was

; put here to make space elsewhere. It is only

; called from NEW. After the first CLS command

; (which is always done in FAST mode now), you then

; have a full display file and it stays that way.

INC
HL

DJNZ
MAKE

RET

;--

;Following code is then redundant

;LD
A,($4005) ; sv RAMTOP_hi

; CP $4D ;

; JR C,L0A52 ; to COLLAPSED

; SET 7,(IY+$3A) ; sv S_POSN_y

;; CLEAR-LOC
;L0A42: XOR A ; prepare a space

; CALL L07F5 ; routine PRINT-SP prints a space

; LD HL,($4039) ; sv S_POSN_x

; LD A,L ;

; OR H ;

; AND $7E ;

; JR NZ,L0A42 ; to CLEAR-LOC

; JP L0918 ; to LOC-ADDR

; ---

;; COLLAPSED
; L0A52: LD D,H ;

; LD E,L ;

; DEC HL ;

; LD C,B ;
; LD B,$00 ;
; LDIR ; Copy Bytes

; LD HL,($4010) ; sv VARS_lo

;--

; -----------------------

; THE 'SCROLL' SUBROUTINE

; -----------------------

;

;

; TB routine is completely different, and in fact much faster than the old one.

; It is a modification of a program by Dan Tandberg, called Fast Scrolling (a

; collection of which is, by the way, available in a listing from T. Woods). It

; is quite good.

;; SCROLL
L0C0E:
LD
HL,($400C)
; sv DFILE

INC
HL

PUSH
HL

LD
DE,$0021

ADD
HL,DE

POP
DE

LD
B,$15

L0C1A:
PUSH
BC

LD
BC,CHAD
; Check code / address – HEX is 012000

LDIR

INC
DE

INC
HL

POP
BC

DJNZ
L0C1A

DEC
HL

JP
SCRL
;--

;Following code is then redundant

;L0C0E: LD B,(IY+$22) ; sv DF_SZ

; LD C,$21 ;

; CALL L0918 ; routine LOC-ADDR

; CALL L099B ; routine ONE-SPACE

; LD A,(HL) ;

; LD (DE),A ;

; INC (IY+$3A) ; sv S_POSN_y

; LD HL,($400C) ; sv D_FILE_lo

; INC HL ;

; LD D,H ;

; LD E,L ;

; CPIR ;

; JP L0A5D ; to RECLAIM-1

;--

; -------------------

; THE 'SYNTAX' TABLES

; -------------------
; i) The Offset table

; This is the beginning of the offset table. All of the BASIC command addresses
; are located in this table. If you relocate (permanently) a given BASIC

; command, then just put the starting address for the command that you change.

; That is what we have done with LPRINT. The address 03D7 corresponds to the

; new routine address. We take over before any flags have been set or variables

; changed, AND more importantly, we do not touch the old routine at all.

; ii) The parameter table.

;; P-LPRINT
L0CB4:
DEFB
$05
; Class-05 - Variable syntax checked entirely

; by routine

DEFW
LINE
; TB: Address: $03D7; Address: LPRINT

; Pointer to new LPRINT routine

;--

; Following line is then redundant

; DEFW L0ACB ; Address: $0ACB; Address: LPRINT

;--

; -------------------------

; THE 'DIM' COMMAND ROUTINE

; -------------------------

; An array is created and initialized to zeros which is also the space

; character on the ZX81.

;; DIM
L1409:
CALL
L111C
; routine LOOK-VARS

;; D-RPORT-C
L140C:
JP
NZ,L0D9A
; to REPORT-C

CALL
L0DA6
; routine SYNTAX-Z

JR
NZ,L141C
; forward to D-RUN

RES
6,C
;

CALL
L11A7
; routine STK-VAR

CALL
L0D1D
; routine CHECK-END

;; D-RUN
L141C:
JR
C,L1426
; forward to D-LETTER

PUSH
BC
;

CALL
L09F2
; routine NEXT-ONE

CALL
L0A60
; routine RECLAIM-2

POP
BC
;

;; D-LETTER
L1426:
SET
7,C
;

LD
B,$00
;

PUSH
BC
;

LD
HL,$0001
;

BIT
6,C
;

JR
NZ,L1434
; forward to D-SIZE

LD
L,$05
;

;; D-SIZE
L1434:
EX
DE,HL
;

;; D-NO-LOOP
L1435:
RST
20H
; NEXT-CHAR

LD
H,$BB
; TB: This is one of those oversight routines that is

; useless. Sinclair must have thought that no-one

; would ever use the ZX81 with more than 16K. He put

; an arbitrary limit on the size of a single array at

; 16K. I changed this LD H,$40 to LD H,$BB, but it

; may as well have been FF. You can’t make an array

; larger than memory available anyway. Other

; routines watch out for this error. This routine

; could be eliminated and something else put in that

; is more useful. There is at least 8 bytes here.

;--

; Following line is then redundant

; LD H,$40 ;

;--

; ---

; this branch deals with zeros after decimal point.

; e.g. .01 or .0000999

;; PF-ZEROS
L16B2:
NEG

; negate makes number positive 1 to 4.

LD
B,A
; zero count to B.

LD
A,$1B
; prepare character '.'

RST
10H
; PRINT-A
L16B8:
LD
A,$1C
; prepare a '0'

;; PF-ZRO-LP
L16BA:
RST
10H
; PRINT-A

DJNZ
L16B8
; loop back to PF-ZRO-LP

; TB: This oversight originally jumped back to L16BA

; which printed whatever was in A (garbage). This

; change was originally reported in Syntax, and

; incorporated in the TS1500 ROM.

JR
L16C8
; forward to PF-FRAC-LP

; ------------------------

; THE 'ZX81 CHARACTER SET'
; ------------------------

;; char-set - begins with space character.

; Although we do not have the proposed changes to these characters suggested by ; Thomas Bent we have made some changes looking at the sample listing he has in ; his document – these need testing to get the best solution on screen. We have ; no idea why the British Pound symbolk was changed to a single quote and being

; UK based would not suggest this!
; $1C - Character: '0' CHR$(28)

 DEFB %00000000

 DEFB %00111100

 DEFB %01000110

 DEFB %01001010

 DEFB %01010010

 DEFB %01100010

 DEFB %00111100

 DEFB %00000000

; $30 - Character: 'K' CHR$(48)

 DEFB %00000000

 DEFB %01000100

 DEFB %01001000

 DEFB %01110000

 DEFB %01001000

 DEFB %01000100

 DEFB %01000010

 DEFB %00000000

; $34 - Character: 'O' CHR$(52)

 DEFB %00000000

 DEFB %00111100

 DEFB %01000010

 DEFB %01000010

 DEFB %01000010

 DEFB %01000010

 DEFB %00111100

 DEFB %00000000

; $36 - Character: 'Q' CHR$(54)

 DEFB %00000000

 DEFB %00111100

 DEFB %01000010

 DEFB %01100010

 DEFB %01010010

 DEFB %01001010

 DEFB %00111100

 DEFB %00000010

; $3B - Character: 'V' CHR$(59)

 DEFB %00000000

 DEFB %01000001
 DEFB %01000001
 DEFB %01000001
 DEFB %01000001
 DEFB %00100010

 DEFB %00010100

 DEFB %00001000

; $3C - Character: 'W' CHR$(60)

 DEFB %00000000

 DEFB %01000001
 DEFB %01000001
 DEFB %01000001
 DEFB %01001001
 DEFB %01010101
 DEFB %00100010

 DEFB %00000000

