1. ATARI

Poy tfolio

PORTFOLIO
POWERBASIC®

USER’S MANUAL

Portfolio
PowerBASIC®

Reference
Guide

I

C® Portiolio PowerBasic

COPYRIGHT @ 1991 BY ROBERT S. ZALE. ALL RIGHTS
RESERVED.

PORTIONS OF THE SOFTWARE AND DOCUMENTATION
COPYRIGHT © 1987, 1989 BORLAND INTERNATIONAL,
INC. ALL RIGHTS RESERVED.

All Spectra Publishing products are frademarks
or registered tfrademarks of Spectra Publishing.
All Atari products are trademarks or registered
trademarks of Atari Corporation. Other brand
and product names are trademarks or reg-
istered trademarks of their respective holders.

PRINTED IN THE USA.
10987654321

Q0000 00COOOOOOOCOCONOCOOOO

C® portiolio PowerBasic

114

AN aaanaaaaaay:

COPYRIGHT @ 1991 BY ROBERT S. ZALE. ALL RIGHTS
RESERVED.

PORTIONS OF THE SOFTWARE AND DOCUMENTATION
COPYRIGHT ® 1987, 1989 BORLAND INTERNATIONAL,
INC. ALL RIGHTS RESERVED.

All Spectra Publishing products are Trcdqmarks
or registered trademarks of Spectra Publishing.
All Atari products are trademarks or registered
trademarks of Atari Corporation. Other brand
and product names are trademarks or reg-
istered trademarks of their respective holders.

PRINTED IN THE USA.
10987654321

& Portiolio PowerBasic

oo @t N T Erv N S

Introduction 1
The Compiler and the Run-Time Library 1
RUN files vs. .COMfiles 2
L R S AN D 2
EOMBIOR. i 50 565 0his e s mrim eonor e mmmeatarsis !
Changing executable file types 5
Installing Portfolio PowerBASIC 6
Compiling and running a program 7

Creating a program with the Portfolio’s editor . 9
Using the Portfolio PowerBASIC Help File ... 10

Distributing the Run-Time Library 12
Customer Support 12
Typefaces used in thismanual 13
Chapter 1 Programmer’s Reference 17
Command categories 17
The reference directory format 19
Portfolio PowerBASIC Program elements 22

It G RN R A e LA LWL) 22

EDIMENEIES . s ooty i mimcrin o TS LB 24

Line nambers .. oo a0« 2L B 2 24

C® portolio PowerBasic
Labelside.s s osvesvsiesiss i 25
Metastatementscooeiiiiaainn 26
Character' setoivesvsseassos sanins 27
Characters and symbols 28
Naming variablescoovenens 28
Reserved wordscooveeuneennns 29
Portfolio PowerBASIC Data Types 30
Integers (%)coveveercnncinaiann.s 32
Single-Precision floating point () 33
Double-Precision floating point (#) 34
Strings (§)iiiiiieiii il 34
(@(0) (1173311 s SIkIRRIGL S Y RS B dorgredebotol, ull ko 35
String constantsc.oooann 35
Numericconstants 36
A 7 o) G A S A A ot By e 37
ATTayS, ik s g v e phe e S 38
SUDBEHPES: ol e e mamsin s Ma e vita 40
String arraysvoevueeeneennaeans 40
Multidimensional arrays 41
Array storage requirements 41
EXPressionscccovviniracenananenns 42
Operatorsc.ocuvniuriiruaronsrnens 45
Arithmetic operators 45
Relational operatorsovuvinnn 46
Logical operatorsooun 48
Bit manipulationsl 49
Strings and relational operators 50

(EETEETLEeeeeinitittt

C® portiolio PowerBasic

Signed and unsigned integer representation . 52

$COM metastatementcovvnnennn 54
$STACK metastatement 54
A el (e Co) R P 1P A1 55
ASEHRCHEN L s v e o SR A S B5
PN HRCHOMY Lk 4 Al e w St il S b 56
BEER Stateifent L. vsoemesnbiasmsaliom a 58
BN RRETIIN - 0cs0caim ayasaes o eiore s TasE WIEREER 59
AL Statement - . v ci s s sl & kivie o 60
CALL INTERRUPT statement 61
CHDIR SRAtEMONT ..o v s o S 4 62
CERS fUNCHON. .o vt s 63
RIRCLE statement ... i odennsamu ity 63
CERAR Statement « v sueoeestomidsiatalonds sl 64
CLESE stAtement: <. «.« v v svvrstainmained. A 64
EESstatefient oo vonwsveam e vameibasand dok 65
COMMANDS functioncovvvunnnn 66
EESTINCHON . i v s sy asataas 66
GEREINTONCHON (v v ssvalimn St smu A5y 67
CVI, CVS, and CVD functions 68
EDATA STAtEMENIt o1 siiies v Saisms e o el 69
DATES system variable 70
DEF FN/END DEF statement 71
DEFINT, DEFSNG, DEFDBL, and DEFSTR

BERECTIOENES s i e e i 1 ST 74
DEFSEG statementccvveuuss 75
DIMstatementccvveveinrennans 76

G portfolio PowerBasic
DO/EOOP: statement; 100 Lo Laiann. i e 78
ENDistatement: . oo s o it 2 0sm IS 82
BOBfuneHon ... oo o050 52 W Ie iy 0N 83
ERL and ERR functions 84
BREROR SIAtemente . . e viniwim: siniesnane S UM 84
BXECUTE statement .. . ooy v v o L00T LN 85
BXIT statermnents, « v it datbecomt B U RIE RS 86
BXPACHON -« v o0 emionmin wowimn s sioe A A AT U 87
PIELIYstatemiannt . . i vieote sn rud iz inle ial 88
POR/INEXT staterienit i ilh oo v o corabilorh b 89
BRE FOURCHOI . v00 00 i oo LA, MAEH 91
GETstatementovuenerennnennn 92
GET S ONCHORN v v s rwren e o SR S L 93
GOSUB statement:cooeo b bl a0 94
GOTO statementc.covvvmveeniennnos 95
HEX$FUNTHON' + v ve wiesrw viomsros o G IRID IR 96
T SEACBTONE . v v v0vemsmsmsms S dretd L S LML A M 97
IE:block statement: ...« vom e e SO 99
INKEYSFUREHOM - «so00s tsmoinsnma S MEUL VU 101
INP fUnetion . otded el Lol usa el 102
TINPUITSEALEIACIIE «ovv-covsvovs o WA TN GLE A0 103
INBUT #:statement . . .« s Sabiiis 2k 104
INPEITS fuitiction: Muressintin A3l WM, 105
INSTAT - funeton & .\ WLt o A il L 106
INSTERAUNGHON L o s o o st sosaveran 2ol 1TE 107
INTFINCHON i s nmn s wanment R UHE AL 107
KIELstatement .-.v vasameninwnioe S el 108

PITTTETTELETTTTTITece

C Portiolio PowerBasic
ECASES funcHOn 4. otiie vm won Seebbisrisst, 114 109
EERES fafiction: ai. oo orsinsmemisiz 16 109
TENINCHOT % b s s st o T A 110
DETSEAPSIEIE = o0 s ol oot shbiom o S AT Wi Ll 110
IAINE statement.. dabei i, 02 L LY 110
LINE INPUT statement 111
LINE INPUT # statement 112
0 By 1311 e () o LTSRN TSI TY) 113
EOCATE statement: {. ool dd v d bt hishad 114
ROEINCHON 11 ecee o N S et S ET, 114
JELGL € 5111 T (o) « AR 1 S ETIY L= I oy 115
11600230 33 T3 Cec (o) ¢ ARNNISIIN PRTS TP PN YOO U OR WO LR o 1 115

LPRINT and LPRINT USING statements. . .

ESET statement ... L. il s msdnt s A 0T 117
MID$ functionccvnninn.. 118
MID$ statement 119
MKDIR statement 120
MKI$, MKS$, and MKD$ functions 120
NAMEsstatementcovvvvennn.. 121
TS TINCHOM . oroie i s sassemae d s b biza) 122
ON ERROR statement 123
ON/GOSUB statement 123
ON/GOTO statement 124
OPEN SEAtEIBOE « vansvvmmimst s Rald e] 125
OPEN COM statement 127
QOUT SEARSTHEHT oo siosionemsi s winisittins 130
FREIC FOneHon! - ssaneness s it 131

J

S

G2 portiolio PowerBasic
POINT FURCHON . o o000 00 ove oo o SEASSRE AR 132
POKEstatementcovuevnnnnnennn 132
POSFUNCHO « » oo 0 v0n w0008 s0000 wver LA IETL S 133
PRINT. statement . «uoeoes oo v o000t sl 133
PRINT USING statement 136
PRINT # and PRINT # USING statements .. 141
PSET statement.« dssrmniaie 2 TLISVILE 143
PUT.statement - .o o wiiam s GBS 143
BUTS statement . v ddnassizn LA 144
RANDOMIZE statement 145
READ statement ... v e SRbnngts 145
REG function and statement 146
REM statements.ic .2 W00 LTS Sma TV 148
RESTORE statement . . cow e limaailissl 149
RESUME statement 0.0, 149
RETURN statemnento e nibiiiinm 150
RIGHTS function «.cusnwmerodasiamitizngi 151
RMDIR statement .o afsdddonsia AN 2 151
RIND UNCHOM v oo ivasiro s pnamsl ote 152
ROBT statement . v i sitaiios Sa s 152
SCREEN fUncHOn & v ivou A ias o ia iy 153
SCREEN statement ...t iilasin 154
SEEK statement ... vl Sih i, 154
SGN functon .. vaarunaiainid 155
SIN-BMCHON: wivvvievamdiininin A4 155
SORMINCHON 5 5 vis5. o5 550 0 rasars SEAIIGE 156
STRS FUnCHON -5 5. 5memnerore o s AL S0 4 157

Vi

TR

g

STRINGS function
STRPTR function

STRSEG function

SUB/END SUB statements
FAB FUNCHOI vvviv s ssivaamasime swevs 0s
TAN function
TIMES$ system variable
TONE statement ;. oviiaseie o sssi
TROFF and TRON statements
UCASES$ function
VAL function
VARPTR function
VARSEG function
WHILE/WEND statements

Appendix A Error messages
Run-time errors

Trapping run-time errors
Compiler errors
Run-time errors—listing
Compiler errors—listing

Index

Vi

1.1 Special SYMDOIS aon wiieincs v v s b aiie it 29

1.2: Summary of data types 31

1.3: Numeric data types—sizes and ranges .. .31

1.4: Arithmetic OPEralorso ey sion e 46

1.5: Relational operators 47

1.6: Truth Tables for Logical Operations 49
vill

1

RRRRRRRRAR AR R RNY

Q)

U

C® portiolio PowerBasic

R E S

1.1: A five-element numericarray

1.2: Definition of Radians

LELTLLTEEETEETITLLILE

B portiolio PowerBasic

RO DL WG T O N

PowerBASIC is a structured, high-level language which
you can use to write useful and powerful programs for
the Atari Portfolio computer. Portfolio PowerBASIC is a
command-line compiler which compiles a PowerBASIC
source program to machine code that is directly
executable on the Portfolio machine.

The Compiler and the
Run-Time Library

Portfolio PowerBASIC consists of two files: the compiler
(called PB.RUN) and the run-time library (called
PBRUN.RUN). These files work together to provide an
environment in which PowerBASIC programs can be
executed. The compiler creates a small executable
program in machine code from your original source
program. The run-time library contains “standard”
procedures which are used by most programs (routines
to read a line of text from a data file or format numeric
information, for example).

B portfolio PowerBasic C® Portiolio PowerBasic

card is treated just like any other portion of the
machine’s main memory, rather than like a separate
disk device, a program image which is stored on a card
does not need to be loaded into a separate area of
memory before it can begin running. It is always
present in main memory while the card is plugged into
the Portfolio, in a form which is ready to execute; it can
simply “run in place.”

The main advantage of a .RUN file is that no extra
memory space, beyond that which is necessary to
simply store the image (on a RAM card or ROM card),
is required to execute the program. .COM files require
extra memory space in which to load another copy of
the program; this process also takes additional time.
.RUN files do have some disadvantages, however:

In order to execute a compiled program, the run-time
library must be present in memory. This can be
accomplished in either of two ways:

® You can load it into memory once, before
executing any compiled programs; it will then
remain resident until the Portfolio is rebooted. In
order to do this, the run-time library file must be a
.COM file (PBRUN.COM for example).

B You can cause it to be loaded automatically, each
time that a compiled program is executed; it will
then be automatically unloaded after each pro-
gram has finished executing. In order to do this,
the run-time library must be a .RUN file called
PBRUN.RUN.

" . B Since a .RUN file must contain a complete,

; RU N f||eS VS. . Co M flleS sequential image of the code to be extfcuted, it

must not be fragmented in any way, including by

DOS. Modifying or deleting any file on a memory

card may cause any or all of the files on the card to

become fragmented as DOS attempts to fill up
gaps on the card which were created by the
previously-used files. To ensure that no
fragmented files exist on a memory card, you must
first format the card before copying any files onto
it. Simply deleting all of the files which are present
on a card (by using DEL *.*) is not enough; you
must actually format the card using FORMAT. You
may then copy any number of files onto the card
and they will not become fragmented. If you ever

There are two different types of executable programs in
the Portfolio PowerBASIC environment: .RUN files and
.COM files. Both have their advantages and dis-
advantages; Portfolio PowerBASIC gives you the
flexibility of using either or both types.

.RUN files

A .RUN file is an exact sequential byte-for-byte image
of an executable program. Since a Portfolio memory

rrereeeeeeeeeeeeetece

S portiolio PowerBasic

delete a file from the card, or modify a file on the
card, however, it is most likely that some or all of
the files on the card will become fragmented. If a
RUN file becomes fragmented, it will not execute
properly, and you must start the whole process
over again with a formatted card in order to
properly restore the file.

B A RUN file can only be executed if it is located on
a memory (RAM or ROM) card; the Portfolio’s
internal drive can be used to store such files but
not to execute them.

® The memory card upon which an executing .RUN
file is located must remain physically plugged into
the Portfolio until the program has completed
execution. You can’t remove the card in order to
insert another containing a data file to be accessed
by the program, for example; all data must be
located on the memory card which contains the
.RUN file or on the Portfolio’s internal drive.

.COM files

A .COM file can contain information which describes
different parts of a program, in addition to the program
code itself. It is loaded into main memory and may
need to be rearranged before it can execute. This
requires additional memory space, since two copies of
the program must exist at execution time: the original
.COM image, and the new “executable” image (which
is constructed from the original).

1PEEeeeeeeeesseeeees

2 pontiolio PowerBasic

The restrictions which apply to .RUN files (listed
above) do not apply to .COM files, however, since
COM files go through a separate loading process into
main memory before execution begins. Therefore, the
files may be fragmented and may be executed directly
from the Portfolio’s internal drive. Memory cards may
also be swapped during program execution.

Changing executable file types

The Portfolic PowerBASIC compiler and run-time library
are distributed as .RUN files, while the compiler
generates COM files. Due to the unique structure
implemented in the Portfolio PowerBASIC system, you
can change the types of these files by simply renaming
them to use the appropriate file extension. For example,
a program generated by the compiler called
MYPROG.COM can be made to act like a .RUN file by
using the DOS REN command to change its name to
MYPROG.RUN. The compiler itself can be made to act
like a .COM file by renaming it to PB.COM. Any .COM
or .RUN file which is part of the Portfolio PowerBASIC
system or which was created by the PB compiler, may be
interchanged in this manner. Do not attempt this with
the other .COM or .RUN files provided on the Portfolio,
or with those created by other programs; only the
Portfolio PowerBASIC system implements the structure
required to interchange both file types.

A .COM file is executed directly at the DOS prompt
simply by typing its name; a .RUN file must be exe-

5

B portiolio PowerBasic

cuted via the DOS RUN command. In order for the
run-time library to be automatically loaded when a
program begins execution, it must be named as a . RUN
file: PBRUN.RUN. If it is named PBRUN.COM, you
must load it yourself at the DOS prompt; it will then
remain resident in memory until the Portfolio is
rebooted.

Installing Portfolio
PowerBASIC

The Portfolio PowerBASIC files are supplied on a ROM
(read-only memory) card. Since the files are provided
in .RUN format (PB.RUN and PBRUN.RUN), both the
compiler and the run-time library may be executed in
place on the card. Keep in mind, however, that you
cannot remove the card while the compiler or run-time
library is executing. With the ROM card plugged into
the Portfolio (thus preventing the use of an additional
RAM card), the amount of disk space which is available
to store your compiled programs is limited by the
capacity of the Portfolio’s internal drive. If you have
used the DOS FDISK command to allocate a significant
amount of the internal drive to disk space rather than
memory space, your programs may run out of memory
quickly or may not be able to execute at all. Therefore
we suggest copying PB.RUN and PBRUN.RUN from
the ROM card to a RAM card before using them. By
doing so, you will have plenty of disk space on the

6

PLEfeeeeeeteeiietiiity

CB portiglio PowerBasic

RAM card to store your compiled programs, and you
can allocate more of your internal drive to memory
space for your programs to execute in.

Compiling and running @
program

The steps to create and run a program are as follows:

® Use the Portfolio’s built-in text editor to create a
PowerBASIC source file, or download such a file
from your IBM PC. This file may be named any-
thing you wish (as long as it conforms to the DOS
file naming conventions; see Chapter 1 of the Atari
Portfolio Owner’s Manual), though we suggest that
you use the extension .BAS to easily distinguish
PowerBASIC source files from files of other types.

m Start up the compiler. If it is named as a .RUN file
(PB.RUN), you must execute it in place by typing
RUN PB. If you have renamed it to PB.COM, you
must execute it by typing PB. In either case, you
can follow the name of the compiler with the name
of the source file to be compiled, as in: PB
TESTPROG.BAS. If you do not specify a file
extension, as in: PB TESTPROG, .BAS will be
assumed. To compile a file which really does not
have an extension, such as MYPROGI, you must
follow the name with a period on the command

G portiolio PowerBasic

line: PB MYPROGL., in order to keep the compiler
from appending .BAS.

If you did not follow the compiler name with the
name of the source file to be compiled, Portfolio
PowerBASIC will assume that you wish to compile
the file which was last edited using the Portfolios
text editor application.

The compiler will now compile your program to a
.COM file, displaying the name of the file and the
amount of free memory left upon completion. If
your program contains an error, an appropriate
message is displayed and you are returned to the
DOS prompt.

If you wish your executable program to be a .RUN
file rather than a .COM file, simply rename it with
the extension .RUN.

To execute your newly created program, the
Portfolio PowerBASIC run-time library must be
loaded in memory. If the run-time library file is
called PBRUN.RUN, your program will load it
automatically when it begins execution. If you
have renamed it to PBRUN.COM, you must load it
yourself by typing PBRUN now; it will remain
resident in memory until you re-boot the Portfolio.
You are now ready to begin execution of your
program. If your program is a .COM file, simply
type its name (with or without the .COM
extension) at the DOS prompt. Otherwise, you
must use the RUN command to execute it. If you
did not previously install the run-time library,
your program will detect this and attempt to install

LILTLELELTTETTTTILINE

C® porticlio PowerBasic

it automatically before continuing. In order for
automatic installation to take place, the run-time
library must be named PBRUN.RUN, and must be
present on a card which is plugged into the
Portfolio. If the run-time library is not accessible,
your program cannot execute.

Creating a program with
the Portfolio’s editor

The Portfolio contains a built-in Text Editor application
which can be used to create Portfolio PowerBASIC
source programs and data files. Most of the time, you
will be performing three simple operations with the
editor: load a file, edit the file, and save the file to disk.

To start up the editor, hold down the Atari (4) key and
press E. Alternatively, you can just press E if the
applications menu is displayed, or you can type APP /E
at the DOS prompt. The editor now loads the file that
you were last editing, or creates a new file called
UNNAMED.TXT.

If you wish to load a different file, press the Atari key
(4) or the F1 key to bring up the main menu, select
Files, then select Load... and type in the name of the file.
Once the file has been loaded, you can use the arrow
keys and other editor commands to move around in
and change the text as you so desire.

C® portiolio PowerBasic
When you are ready to save the file, simply press the
Esc key. If you have made any changes to the file since
you loaded it, the editor will now ask you if you wish
to save the changes to disk. If you do, select Yes. Other-
wise the changes will be lost. You are now ready to
compile the file with the PB compiler (assuming that

you have placed Portfolio PowerBASIC source code in
the file).

If you make changes to a file and want to save the
result under a different file name, press the Atari key
(M) or the F1 key (rather than Esc) to return to the main
menu again. Select Files, then Save as.... The editor will
now display the default file name and allow you to
enter a new file name. If the new file already exists, the
editor will ask you if you wish to overwrite the old file
before doing so.

For more information on using the text editor, see
Chapter 7 of the Atari Portfolio Owner's Manual.

Using the Portfolio
PowerBASIC Help File

The Portfolio contains a built-in Address Book
application which can be used in conjunction with the
file PB.ADR to obtain information about Portfolio
PowerBASIC statements and functions.

TEELEEEELELTTEELLLLE

C® pyrifglio PowerBasic

To start up the Address Book, hold down the Atari (A)
key and press A. Alternatively, you can just press A if
the applications menu is displayed, or you can type
APP /A at the DOS prompt. The Address Book now
loads the address file which you were last using, or
creates a new file called UNNAMED.ADR. If you have
never used the Address Book before, or if you were last
using it with an address file other than PB.ADR, press
the Atari key (A) or the F1 key to bring up the main
menu, select Files, then select Load... and type in
PB.ADR.

Once the file has been loaded, a list of Portfolio
PowerBASIC statements and functions will appear. Use
the arrow keys to scroll the list until you find the item
whose help information you wish to view, then press
the ATN key when the cursor is located on the
appropriate line. This will display more information
about the selected statement or function. Many items
have more than one screen of help information; use the
arrow keys to scroll through the text line by line.

When you are ready to return to the main list, simply
press the Esckey. You can now select another item or
press Esc again to return to the DOS prompt. The next
time that you start up the Address Book, the PB.ADR
file will be loaded automatically; you will see the list of
statements and functions immediately.

For more information on using the Address Book, see
Chapter 4 of the Atari Portfolio Owner’s Manual.

B portfolio PowerBasic

Distributing the Run-Time
Library

As described in the Portfolio PowerBASIC License
Agreement included with this product, the Portfolio
PowerBASIC run-time library (PBRUN.COM and /or
PBRUN.RUN) may be distributed under the terms and
conditions listed in the agreement. These run-time
modules are copyrighted and can only be distributed
with your software product, in such a manner that they
supplement the intrinsic value already existing in your
software product.

Customer Support

Atari Corporation welcomes inquiries about your Atari
computer products. We also provide technical
assistance. Write to Customer Relations at the address
below.

Atari user groups also provide outstanding assistance.
To receive a list of Atari user groups in your area, send
a self-addressed, stamped envelope to an address
below.

LERTEDTTLILTLELE

AL

\J

111

wp folio P E "
In the United States, write to:
Atari Corporation
Customer Relations

P.O. Box 61657
Sunnyvale, CA 94088

In Canada, write to:

Atari (Canada) Corp.
90 Gough Road
Markham, Ontario
Canada L3R 5V5

In the United Kingdom, write to:

Atari Corp. (UK) Ltd.
P.O. Box 555

Slough

Berkshire SL2 5BZ

Please indicate User Group List, Technical Assistance, or
the subject of your letter on the outside of the envelope.

Typefaces used in this
manudal

The different typefaces in this manual are used for the
following purposes:

13

B portolio PowerBasic
Italics indicate areas within commands that you need to
fill in with your application-specific information;
variable, function, and procedure names, for example,
or variable values. For instance,

POKE address, byte value

means that you must supply values for address and byte
value when you use the POKE statement in a program.

UPPERCASE indicates that part of a command that you
must type in exactly as shown. For example,

RESUME 125

must appear in a program exactly as shown (although
capitalization is not required).

SMALLCAPS: All Portfolio PowerBASIC reserved words
(for example, END, RETURN, and $STACK) appear in this

typestyle.

Brackets [] indicate that the information they enclose is
optional. For example,

OPEN filespec AS [#]filenum

means that you can include a number sign (#) before
the file number in an OPEN statement or leave it out, at
your option. Therefore both of the following are legal
Portfolio PowerBASIC statements:

OPEN "cust.dta" AS 1
OPEN "cust.dta" AS #1

S

LIS

S portiolio PowerBasic

Braces (} indicate a choice of two or more options, one
of which must be used. The options are separated by
vertical bars (). For example,

GOTO (label | line number}

means that both GOTO followed by a label and GOTO
followed by a line number are valid statements, and
that GOTO by itself is not.

Ellipses ... indicate that part of a command can be
repeated as many times as necessary. For example,

READ variable [,variable)...

means that multiple variables separated by commas
can be processed by a single READ statement:

READ a$
READ a$, b$, a, b, ¢

Vertical Ellipses: three vertically spaced periods
indicate the omission of one or more lines of program
text that are not important for the particular example.
For example,

FORn=1TO 10

N‘E.T.XTn

These dots are also represented by (statements}.

156

C® portivlio PowerBasic C& pontolio PowerBasic

Keycaps indicates a key on your keyboard. It is often
used when describing a key you have to press to
perform a particular function; for example, “Press Esc
to exit from a menu.”

O
=
>
o
—
m
7o

Programmers
Reference

This chapter contains an alphabetical listing of all of
Portfolio PowerBASIC's commands. Each entry goes into
exact and specific detail about each command, and is
cross-referenced to other relevant commands. Portfolio
PowerBASIC’s arithmetic, logical, and boolean
operators, as well as its data types, are also described.

PEEEEEEELTLE

Command categories

Portfolio PowerBASIC's commands can be grouped into
four categories according to their syntactic class:

LTI

16 17

CB portfolio PowerBasic

functions, statements, system variables, and meta-
statements.

Functions (meaning Portfolio PowerBASIC’s predefined
functions, as opposed to user-defined functions) return
a numeric or string value. They must be used within
expressions. Most functions require that one or more
arguments be passed to them by the program; these
arguments are either numeric, string, or combinations
thereof, depending on the function. For example:

t=CO0S(3.1) "numeric function

‘(1 numeric argument)

t$ = LEFT$("Cat",2) ‘string function (1 string,

"1 numeric argument)

Statements are the building blocks that make up
programs. They instruct the computer to perform
certain actions, such as open a file, display a string, or
produce sound. Statements do not return a value,
though many of them take one or more arguments.
Each statement must appear on a line all by itself, or be
separated from other program elements with
delimiting colons or comments. For example:

‘open a file, display some text, beep
‘the speaker and assign the value 100
‘to the variable Count

OPEN "DATAFILE.TXT" as #1
PRINT "This is a test"

BEEP : Count = 100

System variables allow your program to interact with
your system (“system” means your computer, its

18

gy e ey gy

F

C® portiolio PowerBasic

peripherals, and operating system). They are pre-
defined by Portfolio PowerBASIC, and can be used to
access and control certain information maintained by
your system. For example:

a$ = DATES
TIMES$ = "10:15"

Metastatements are instructions to the Portfolio
PowerBASIC compiler. Strictly speaking,
metastatements are not part of the PowerBASIC lan-
guage because they operate at compile time, rather
than at run time (during program execution).

‘read today’s date
‘set the current time

A metastatement is preceded by a dollar sign ($) to
differentiate it from an ordinary statement. There can
be only one metastatement per program line. For
example:

$STACK 2000 ‘set the stack size

The reference directory
format

Every Portfolio PowerBASIC command is listed alpha-
betically as a separate entry in this directory. Each
entry contains a brief explanation of what the com-
mand does, a description of its syntax, clarifying
remarks, and an example program. Where appropriate,
related entries are cross-referenced and any restrictions
on use are listed.

9

C® portiolio PowerBasic

Explanations of the syntax description conventions
used in this manual follow:

A numeric expression is a number, a numeric variable, or
any Portfolio PowerBASIC function that evaluates to a
number. Numeric expressions can include arithmetic,
logical, and relational operators. Sometimes the type of
a numeric expression is specified (integer expression, for
example). Examples include:

Numeric constant:
16
0.035

Numeric variable:
Count%
Array1(I)

Numeric function:
SIN(3.14159)
LOGI(x /(16 * x))

Numeric expression:
16*x/y
56112

A string expression is a string constant, a string variable,
or any Portfolio PowerBASIC function that evaluates to a
string. A string expression may optionally include the
concatenation operator (the plus sign, +). Examples
include:

String constant:
I‘(_':a Pl

20

Iy

IR

B pontiolio PowerBasic

String variable:
Anthem$
Array1$(20)

Concatenation:
AnthemS$ + "Cat"

String function:
LEFT$(Anthem$ + "Cat"4)
CHRS$(45)

A path is a string expression describing a valid disk
drive and /or a valid subdirectory. Examples include:

l'A:||

"\POWERBAS"
I!GAMESH
"C:\DATABASE\SALES"

A filespec (file specification) is a string expression
describing a DOS file name, which consists of one to
eight characters optionally followed by a period and a
one- to three-character extension (letter case is ig-
nored). A file specification can include a path. Except
where noted, file names must be expressed as string
variables or string constants. For example:

‘file name
‘directory + file name
‘path + file name

"MYFIRST.BAS"
"powerbas\myfirst.bas"
"a:\powerbas\myfirst.bas"

A label identifies a line or set of lines in a Portfolio
PowerBASIC program. It takes the form of either an
alphanumeric word (which must end with a colon), or
a line number. Both kinds of labels are more or less

2]

2 portiolio PowerBasic

interchangeable in Portfolio PowerBASIC, except that
alphanumeric labels must appear on a line by them-
selves, immediately preceding the program line to
which the label refers. For example:

10 X=Y+2Z ‘ line number 10
MYLOOP:
X=Y+2Z " label MYLOOP

Portfolio PowerBASIC
Program elements

This section describes the basic elements of a Portfolio
PowerBASIC program in greater detail.

Statements

Statements are the simplest building blocks that make
up programs. A line of Portfolio PowerBASIC code can
contain none, one, or several statements, each
separated by a colon. The simplest program in Portfolio
PowerBASIC is a one-line statement, such as:

PRINT "Hello world"

Usually, you'll want to write longer programs. You
could combine several statements on one line,
separating the statements by colons (:). It’s better to use

22

TN

regssess

C2 portiolio PowerBasic

a separate line for each statement. You can add com-
ments to the end of a line and use line numbers at the
start. Briefly, then, Portfolio PowerBASIC programs
consist of one or more lines of source text, each of
which follows one of these formats:

[line number] [statement] [:statement]... [comment]

or

label:

or
$metastatement

If you write lines wider than the Portfolio’s screen
width, you'll have a hard time visualizing your pro-
gram. In situations where syntax requirements force
you to build a long line (the FIELD statement is
notorious for this), put an underscore (_) at the end of
the line. This causes Portfolio PowerBASIC to regard the
next line as an extension of the first. You can use the
underscore to continue statements for many lines. For
example:

PRINT "This is a very long " _
"line that goes on " _
"and on and onand "' _
!Ion"l"

As far as the compiler is concerned, this is one long line
starting with PRINT and ending with “on...” without
any underscore characters.

23

C® Portiolio PowerBasic i

Comments

Comments can be any text added to the end of a line
and separated from the program itself by a single quote
(). The single quote can be used in place of :REM to
separate comments from the statements on that line—
unless it is at the end of a DATA statement, in which
case DATA will think the quote is part of the last item in
the statement. To comment a DATA statement, you need
to use a colon and a single quote. Commenting DATA
statements is definitely recommended. Do you really
think you can remember what all those numbers stand
for?

DATA 130, 140, 150
DATA 135, 156, 157

For other uses, it isn’t necessary to separate single
quoted comments from adjoining statements with a
colon. The following are equal in the eyes of the
compiler:

' X, ¥, z coordinates, ship 1
' X, ¥, z coordinates, ship 2

area = radius”2 * 314159 ‘ calculate the area
area = radius®2 * 3.14159 : REM calculate the area

Line numbers

These are integers in the range 1 to 32767, which serve
to identify program lines. Portfolio PowerBASIC takes a
relaxed stance toward line numbers. They can be freely
interspersed with labels and used in some parts of a

24

.l;

[

C2 Porttolio PowerBasic

program and not in others. In fact, they need not follow
in numeric sequence. No two lines can have the same
number, and no line can have both a label and a num-
ber. Line numbers are essentially labels. If a program
causes a run-time error, the line number of the most
recently executed line will be displayed as part of the
error message. Each line number in your program also
consumes an extra six bytes of memory space.

Line numbers are really just a concession to
compatibility with older versions of BASIC. Line
numbering can lead to bad programming style. Since
the numbers themselves can now be in any order, they
give a false sense of structure to a program. We
recommend that you avoid line numbers and use labels
instead, where necessary.

Labels

Using labels instead of line numbers allows you to
make your program’s flow much more readable. For
example

GOSUB BuildQuarks
tells you much more than
GOSUB 1723

Each label must appear on a line by itself (though a
comment may follow) and serves to identify the
statement immediately following it. Labels must begin

25

|

C Portiolio PowerBasic
with a letter and can contain any number of letters and
digits. Case is insignificant—THISLABEL, thislabel, and
ThisLabel are all equivalent. A label must be followed
by a colon. However, statements that refer to the label
(for example, GOSUB) must not include the colon.

Proper use:

PRINT "Now Sorting Invoices"

GOSUB SortInvoices “This calls a label
PRINT "All Done!"

END

SortInvoices: " This is a legal label
{ Sorting code goes here. }
RETURN

Illegal use:
ExitPoint:a=a+1 ‘labels muststand alone
Although the following would be acceptable:

1010a=a+1 'line numbers are OK on same line

Note that unlike a line number, a label name will not be
displayed as part of a run-time error message.

Metastatements

Metastatements operate at a different level than
standard statements. They are actually commands to
the compiler, rather than part of the program. Also

26

R A

C® portiolio PowerBasic

known as compiler directives, they always begin with a
dollar sign ($). Standard statements control the
computer at run time; metastatements control the
compiler at compile time.

The following are all valid lines in Portfolio
PowerBASIC:

Start: ‘label only

10 ‘line number only
$STACK 2000 ‘metastatement

20 a=a+1 line # + stmt
a=a+1: b=b+1 ‘two stmts

30 a=a+1: b=b+1: c=a+b ‘line # + 3 stmts

While the last line is perfectly valid, it might be more
readable if recast as:

addstuff:
a=a+1
b=b+1
c=a+b

Character set

Portfolio PowerBASIC provides you with a set of
fundamental language elements (characters, symbols,
and reserved words) that can be put together in infinite
ways to build any software machine conceivable. The
characters and symbols are called the character set.
Table 1.1 shows the specific meanings of the Portfolio
PowerBASIC character set.

27

C& portfolio P i
Characters and symbols

The letters A to Z or a to z and the numbers 0 to 9 can
be used in forming the identifiers, or names, of labels,
variables, procedures, and functions.

The numbers 0 to 9; the symbols ., +, and —; and the
letters E, ¢, D, and d can all be used in forming numeric
constants.

Naming variables

Strings, numeric variables, and arrays can share the
same name. For example, fog!, fog$, and fog%(5) are
separate variables. One is a single-precision floating
point variable, one is a string, and the other is an
element of an integer array. Functions, procedures,
subroutines, and other labels cannot share names with
each other, nor can they share names with variables.

Rather than trying to remember the rules of what can
share names and what can’t, you'd be better off using
unique names for everything. This also makes your
code more understandable when you go back to look at
it later.

28

;

SRS

C2 portolio PowerBasic
Table 1.1: Special symbols
Symbol Description Function
- Equal sign Assignment/relational operator
+ Plus sign Addition/string concatenation
operator
- Minus sign Subtraction/negation operator
" Asterisk Multiplication operator
/ Slash Division operator
\ Backslash Integer division operator
2 Caret Exponentiation operator
% Percent sign Integer type declaration
! Exclamation point Single-precision type declaration
Number sign Double-precision type
declaration and file number
indicator
$ Dollar sign String type declaration,
metastatement prefix
0 Parentheses Function/ procedure arguments,
arrays, expression prioritizing
[] Brackets Valid only for arrays
Space Separator
' Comma All-purpose delimiter
: Period Decimal point, file-name
extension separator
‘ Single quote Comment delimiter
: Semicolon All-purpose delimiter
; Colon Statement delimiter; label
terminator
? Question mark PRINT substitute (not good style)
< Less than Relational operator
> Greater than Relational operator
4 Double quote String delimiter
Underscore Line continuation character

29

2 portiolio PowerBasic

Reserved words

Portfolio PowerBASIC reserves the use of certain words
for predefined syntactic purposes. These reserved
words cannot be used as labels, variables, named
constants, or procedure or function names, although
your identifiers can contain them. Most words which
are part of the Portfolio PowerBASIC language are
reserved words.

For example, END is an invalid variable name because
it conflicts with the reserved word END. However,
ENDHERE and FRIEND are acceptable; reserved words
can be a part of a variable name.

There is one exception to this rule: You can’t start an
identifier with the letters FN because it conflicts with
the syntax for user-defined DEF FN functions.

Attempting to use a reserved word as an identifier
produces a compile-time syntax error.

Portfolio PowerBASIC Data
Types

Portfolio PowerBASIC supports three unique numeric
types and a string type:

B integer

30

C® porfolio PowerBasic

m single-precision floating point

m double-precision floating point

B siring
Tables 1.2 and 1.3 summarize the most important
features and distinctions of these data types.

Table 1.2: Summary of data types

Element
Size (in
Variable Type Indicator bytes) D
Integers
Integer % 2 DEFINT
Floating point wl
Single precision ! 4 DEFSNG
Double precision # DEFDBL
Strings
String $ 2 DEFSTR =

* DEFtype refers to all four variable type declaration statements.

Table 1.3: Numeric data types—sizes and ranges

Size Range

Data Type

Integer 16 bits (2 bytes) -32,768 to 32,767 .

Single precision 32 bits (4 bytes) +8.43x10¥ to 3.37x10)

Double precision 64 bits (8 bytes) +4.19x10°7 to £1.67x10
31

J

CB portiolio PowerBasic

Integers (%)

The simplest and fastest numbers rattling around
inside Portfolio PowerBASIC programs are integers. To
Portfolio PowerBASIC, an integer is a number with no
decimal point (what mathematicians call whole
numbers) within the range 32,768 to +32,767. These
values stem from the underlying 16-bit representation
of integers: 32,768 is 215.

Integers are identified by following the variable name
with a percent sign (for example, var%), or by using the
DEFINT statement. For example, if you use this
declaration in your program code:

DEFINT, J, K

all variables following this declaration that start with
the letter I,], or K will be integers by default.

Although this range limits the usefulness of integers,
for many applications they will suffice. In all programs,
there will be at least a few variables (such as the
counters in FOR/NEXT loops) that can function within
these constraints. Using integers produces extremely
fast and compact code. Your computer is uniquely
comfortable performing integer arithmetic (it does it
fast), and each number requires only two bytes of
memory.

32

LR

C® portiolio PowerBasic

Single-Precision floating point (1)

Single-precision floating point numbers (or simply single
precision) may be the most versatile numeric type
within Portfolio PowerBASIC. Single-precision values
can contain decimal points and have a phenomenal
range: £8.43x10°Y to £3.37x10%.

Single-precision variables are identified by following
the variable name with an exclamation point (var!) or
nothing (if you don’t use a type indicator, Portfolio
PowerBASIC assumes you want a single-precision
value), or by using the DEFSNG statement as described
in the previous discussion of integers.

What happens if your finger slips, and you have the
variable count! in one place in your program, and count
with no type indicator in another? Unless you have
used a DEFtype statement to declare that all variables
starting with the letter “c” are by default of another
type, the compiler will assume that these two variables
are one and the same.

You would be hard-pressed to dig up a quantity that
wouldn't fit into a single-precision number. Calculation
speed isn’t bad, although not as quick as that for
integers, and four bytes are required for each number.

Such numbers are wonderfully useful. However, while
single precision can represent both enormous and
microscopic numbers, it cannot remember numbers
beyond six-digit accuracy. In other words, single
precision does a good job with figures like $451.21 and

33

B portiolio PowerBasic

$6,411.92, but $671,421.22 can’t be represented exactly
because it contains too many digits. Neither can
234.56789 or 0.00123456789. A single-precision
representation will come as close as it can in six digits:
$671,421, or 234.568, or 0.00123457.

Double-Precision floating point
#

Double-precision floating-point numbers take twice as
much space in memory as single-precision numbers (8
bytes versus 4 bytes), and consequently take longer to
calculate, but they offer greater range (+4.19x103% to
+1.67x10%%) and accuracy (16 digits versus the 6). The
storage requirement of double-precision numbers
becomes especially significant when dealing with
arrays. A double-precision, 5,000-element array
requires 40,000 bytes. An integer array with the same
number of elements occupies only 10,000 bytes.

Double-precision variables are identified by following
the variable name with a pound sign (var#), or by using
the DEFDBL statement as described in the previous
discussion of integers.

Strings ($)

A character can be any ASCII value from 0 to 255,
including the familiar members of the alphabet, both

34

PP TILe

CB portiolio PowerBasic

uppercase and lowercase. When characters are strung
together, they are called, sensibly enough, strings.
Characters and strings are used in many ways in
programming.

String variables contain character data of arbitrary
length. Each string variable consumes two bytes which
are used internally to locate information about the
string.

Your programs may use approximately 64K of memory
as string space. Each string may be at most 32,750 bytes
(characters) long.

Constants

Portfolio PowerBASIC programs process two distinct
classes of data: constants and variables. A variable is
allowed to change its value as a program runs. A con-
stant’s value is fixed at compile time and cannot change
during program execution (hence, it remains constant).
Portfolio PowerBASIC supports two types of constants:
string constants and numeric constants.

String constants

String constants are simply groups of characters
surrounded by double quotes. For example,

"This is a string"

C& portiolio PowerBasic

"'3.14159"
"Kurt Inman, Engineer at Large"

If a string constant is the last thing on a line, the closing
quotes are optional:

PRINT "This is sloppy but legal.

Numeric constants

Numeric constants represent numeric values. They
consist primarily of the digits 0 through 9 and a
decimal point. Negative constants need a leading
minus sign (-); a plus sign (+) is optional for positive
constants. The amount of precision you supply deter-
mines the internal representation (integer, single
precision, or double precision) which Portfolio
PowerBASIC will use in processing that constant.

If a numeric constant is not followed by a type specifier,
the following rules are used to determine which pre-
cision to store the value in:

1. If the value contains no decimal point and is in the
range —32,768 to 32,767, Portfolio PowerBASIC stores
the value as an integer.

2. If the value contains a decimal point (or is an in-
teger outside the range for integer constants) and
has up to six digits, Portfolio PowerBASIC stores it as
a single-precision floating point.

36

TR

L

C pontolio PowerBasic

3. A numeric constant with a decimal point and more
than six digits, or a whole number too large to be an
integer or single-precision number but small
enough to fall within the range of double-precision
floating point, is stored in double-precision
floating-point format. For example:

345.1 Single precision
1.10321 Single precision
1103213 Double precision
3453212.1234 Double precision

Variables

Variables represent numeric or string values. Unlike
constants, the value of a variable can change during
program execution. Like labels, variable names must
begin with a letter and can contain up to 255 letters and
digits (although in practical terms you really can’t
exceed the length of a line). Be generous in naming im-
portant variables.

Portfolio PowerBASIC supports four variable types:
string, integer, and single- and double-precision
floating point. Usually, variable typing is accomplished
by appending a type declaration character to the
variable name. Table 1.2 on page 31 summarizes the
distinguishing characteristics of variable types.

If you don’t include a type declaration character with a
variable, Portfolio PowerBASIC uses its default type,

37

B portiniio PowerBasic ’ i

single precision. To make another type the default, use
the DEFtype statement. For example,

cat# =1.312 ’ cat# is a double-precision variable

cat =16.5 ’ cat is single precision by default

cat% =3 ' cat% is an integer variable

DEFINT ¢ * variables beginning with ¢ are now
’ integer by default

cats =16 ’ cats is an integer variable by default

Note that cat#, cat, and cat% are all separate variables.

A common practice to save space and make cal-
culations faster is to declare DEFINT a-z at the start of
all programs. Then all variables will be integer unless
declared otherwise. If you do this consistently, you
won't need the % after each integer variable, and you
won't get confused.

Arrays

It’s often useful to treat a set of variables as a group.
This lets you perform repetitive operations more easily.
An array is a group of string or numeric data sharing
the same variable name. The individual values that
make up an array are called elements. An element of an
array can be used in a statement or expression
wherever you would use a regular string or numeric
variable. In other words, each element of an array is
itself a variable.

38

{

L

F

2 portiolio PowerBasic

You can think of an array as a row of boxes numbered
from 0 to a predetermined number; 4, in the example in
Figure 1.1. Each box holds a distinct value, which may
or may not differ from the values in the other boxes.
The boxes and their numbers are represented by
parentheses surrounding a number; for example,
item%(3) represents box number three of the array
item%. Thus, if the value held within box number 3 is
1952, the code total% = item%(3) would place the value
1952 into fotal%.

Hem™{)
[T 7w T 5 [we] w |
Rom®(0) Mem{1) Mem%(2) RemW{3) iem¥%d)

At program startup time, each element of each numeric
array is set to zero; string arrays are set to the null
string (", length zero). This process is called initializing
(or clearing) an array.

Declaring the name and type of an array, as well as the
number and organization of its elements, is performed
by the DIM statement. For example:

DIM payments(55)

creates an array variable payments, consisting of 56
single-precision elements, numbered 0 through 55.
Array payments and a single-precision variable also
named payments are separate variables. If this is con-
fusing, you'll understand why we suggested earlier
that you use different variable names.

39

B portiolio PowerBasic

Subscripts

Individual array elements are selected with subscripts,
which are integer expressions within parentheses to the
right of an array variable’s name. For example, pay-
ments(3) and payments(44) are two of payment’s 56
elements. The first element of an array has a subscript
value of zero.

Whenever Portfolio PowerBASIC finds a reference to an
array which has no corresponding DIM statement, it
automatically DIMensions the referenced array to
eleven elements (subscript values 0 through 10). We
strongly recommend, however, that you take the time
to explicitly dimension every array your program uses.

String arrays

The elements of string arrays hold strings instead of
numbers. Each string can be a different length, from 0
to the maximum string size (32750 characters). The total
string space available for string data and string array
data is approximately 64K. For example,

DIM words$(50)
creates a sequence of 51 independent string variables:

words$(0) = "Pat likes cats."
words$(1) =™

‘15-char string
‘a null string

40

[
[
e
e
T3
T3
T3
T3
T3
er3
o3
53
ors
73
73
73
T3
ik
T2

B portiolio PowerBasic

words$(2) = "Eric is a sweet child." "22-char string

words$(50) = SPACES(200) '200-char string

Multidimensional arrays

Arrays can have one or more dimensions, up to a
maximum of eight. A one-dimensional array such as
payments is a simple list of values. A two-dimensional
array represents a table of numbers with rows and
columns of information. Multidimensional arrays are
equally possible:

DIM one(15) ‘ one-dimensional list
DIM two(15,20) ‘ two-dimensional table
DIM three(7,9,1) ’ 8x10 game board with room

”in the third dimension for 2
’ items: piece type and owner

The maximum number of elements per dimension is
32767.

Array storage requirements

For technical reasons relating to execution speed and
code size efficiency, Portfolio PowerBASIC limits the
amount of memory for variables and arrays to 64K.
This is in addition to the 64K which is available only for

41

2 poriolio PowerBasic

:

string data. Each element of a string array contains a
string descriptor, which takes up two bytes of the 64K
variable/array space. In addition, the actual string data
stored in each element takes up space in the 64K string
data area. The maximum number of elements an array
may contain is a function of its type (see Table 1.2 on
page 31).

Expressions

An expression consists of operators and operands.
Operators are symbols or words, such as the plus sign
(+), that represent mathematical, relational, or logical
(Boolean) operations. Operands are the quantities on
which operations are performed. Like the data types,
there are two fundamental types of expressions in
Portfolio PowerBASIC: string and numeric.

A string expression consists of string constants, string
variables, and string functions, optionally combined
with the concatenation operator (+). String expressions
always produce strings as their result. Examples of
string expressions include

"Cats and dogs" * string constant
firstname$ ’ string variable
firstname$ + lastname$ ' concatenation
LEFT$(a$ + z$,7) ! string functions

a$ + MID$("Cats and dogs",5,3)
RIGHT$(MIDS(a$ + z$,1,6),3)

42

e

|

C® portiolio PowerBasic

Numeric expressions, not surprisingly, are formed from
numeric constants, variables, and functions, optionally
separated by numeric operators. Numeric expressions
produce a value in one of the three numeric types
(integer, single precision, or double precision).
Examples of numeric expressions include:

37

37115

a

37/a

SQR (37/a)

SOR ((c + d)/a) * SIN (37/a)

NOTE: If Portfolio PowerBASIC encounters an
expression in which all operands are integers, it will
expect both the intermediate and final results of the
expression evaluation to be within the integer range. It
will not, however, check to see whether the calculation
actually exceeded this range. To force an expression
(which would otherwise overflow in this manner) to be
evaluated using floating-point arithmetic, you must
include a floating-point operand:

‘causes an Overflow error at
" run-time

a% = 32768

‘no error since 32767 and 1 are
’ both integers

a% =32767 +1

‘causes error since 32767 + 1.0
’ is 32768.0

a% = 32767 + 1.0

a% =2
b% = 20000

43

C portiolio PowerBasic

no error since a% and b% are
* both integers

% =a% *b%

In forming numeric expressions, you should be aware
that certain operations will be performed before others
according to a hierarchy. The following is a list of the
order of expression evaluation. Exponentiation has the

highest priority, meaning it will be performed first; XOR

has the lowest, meaning it will be performed last.

exponentiation (")

negation (-)

multiplication (*), floating-point division (/)
integer division (\)

modulo (MOD)

addition (+), subtraction (-)

relational operators (<, <=, =, >=, >, <>)
NOT

AND

OR, XOR (exclusive OR)

For example, the expression 3 + 6 / 3 evaluates to 5, not
3. Division has a higher priority than addition, so the
division operation (6 / 3) is performed first. Even
though the compiler won't get confused, people could,
so better programming style might be to use 3 + (6 /3)
or 3 + 6/3, using either parentheses or spacing to make
the intent clear. Otherwise, it’s easy to misread the
statement as (3 + 6) / 3.

To handle operations of the same priority, Portfolio

PowerBASIC proceeds from left to right. For example, in

the expression 4 - 3 + 6, the subtraction (4 - 3) is per-

44

i

LTS

CB portfolio PowarBasic

formed before the addition (3 + 6), producing the
intermediate expression 1 + 6.

Operations inside parentheses are of highest priority
and are always performed first; within parentheses,
standard precedence is used. Use parentheses like
garlic—generously, but not to excess.

Operators

The numeric operators are classified into three major
groups: arithmetic, relational, and logical.

Arithmetic operators

Arithmetic operators perform normal mathematical
operations. Table 1.4 lists the Portfolio PowerBASIC
arithmetic operators in precedence order.

45

T - ™

C& Portiolio PowerBasic
Table 1.4: Arithmetic operators
Operator Action Example
& Exponentiation 104
= Negation -16
%ol Multiplication, 45*19,
floating-point division 45 /19
\ Integer division 45\ 19
MOD Modulo 45 MOD 19
+, - Add, subtract 45+ 19,
45-19

Several of these operators merit a word of explanation.
The backslash (\) represents integer division. Integer
division rounds its operands to integers to produce a
truncated quotient with no remainder. For example,
5\ 2 evaluates to 2, and 9 \ 10 evaluates to 0.

The remainder of an integer division can be determined
with the MOD (modulo) operator (MOD is valid for all
numeric types). MOD is similar to integer division
except that it returns the remainder of the division
rather than the quotient. For example, 5 MOD 2 returns
the value 1, and 9 MOD 10 returns the value 9.

Relational operators

Relational operators allow you to compare the values of
two strings or two numbers (but not one of each) to

obtain a Boolean result of TRUE or FALSE. The result
of the comparison is assigned an integer value of -1 if

46

11

A

C® poriolio PowerBasic

the relation is TRUE, and 0 if the relation is FALSE. For
example:

PRINT5>6,5<6,(5<6)*15

prints out 0, -1, and -15. Although they can be used in
any numeric expression (for example, a = (b > ¢) /13),
the numeric results returned by relational operators are
generally used in an IF or other decision statement to
make a judgment regarding program flow. Table 1.5
lists the relational operators.

Table 1.5: Relational operators

Operator Relation Example
- Equality 5=5
<> Inequality 5<>6
< Less than 5<6
> Greater than 6> 5
gm, = Less than or equal to S5<=6
S=, = Greater than or equal to 6>=5

When arithmetic and relational operators are combined
in an expression, arithmetic operations are always
evaluated first. For example, 4 + 5 <4 * 3 evaluates to -1
(TRUE) because the arithmetic operations (addition and
multiplication) are carried out before the relational
operation. This then tests the truth of the assertion 9 <
12.

47

.'

C2 porttolio PowerBasic

Logical operators

Logical operators perform logical (Boolean) operations
on numbers of any type. Before a Boolean operation
takes place, Portfolio PowerBASIC automatically con-
verts floating-point numbers to integers. Used with
relational operators, logical operators allow you to set
up complex tests like

IF day > 29 AND month = 2 THEN PRINT "Huh?"
AND

This statement performs a logical AND on the integer
results returned by the two relational operators. The
AND operator returns TRUE if both its operands are
TRUE. The AND operator has a lower priority than the
> and = relational operators, so parentheses aren’t
needed. For example, if the value of day is 30 and month
is set to 2, both relational operators return TRUE (-1).
The AND operator then performs a logical AND on
these two TRUE results producing a final TRUE result.

OR

The OR (sometimes called inclusive or) operation
returns TRUE if one or both of its arguments are TRUE,
and returns FALSE only if both arguments are FALSE.
For example,

-1 OR 0 is TRUE
0 OR 0 is FALSE
5>60R 6 <4is FALSE

48

LOLOEEEEEEEEELTTTS

C® portfolio PowerBasic
XOR

The XOR (exclusive or) operation returns TRUE if the
values being tested are different, and returns FALSE if
they are the same. For example,

-1 XOR 0 is TRUE
-1 XOR -1 is FALSE
5> 6 XOR 6 <4 is TRUE

Table 1.¢: Truth Tables for Logical Operations

x v xAND y xORy xXORy
T T T T F
T F F T T
F T F T T
F F F F F

Bit manipulations

In addition to creating complex tests, logical operators
permit control over the underlying bit patterns of their
integer operands. The most common operations are
AND, OR, and XOR (exclusive OR) masking.

AND masks clear selected bits of an integer quantity
without affecting the other bits of that quantity. For
example, to clear the most-significant (leftmost) 2 bits
in the integer value 9700 Hex, use AND with a mask of
3FFF Hex; that is, the mask contains all 1s, except for
the bit positions you wish to force to 0:

= l

C2 pontolio PowerBasic

1001 0111 0000 0000 9700 Hex
1 1 x (the mask)
0001 0111 0000 0000 1700 Hex (the result)

An OR mask sets selected bits of an integer without
affecting the other bits. To set the most-significant 2 bits
in 9700 Hex, use OR with a mask of C000 Hex; that is,
the mask contains all Os, except for the bit positions you
wish to force to 1:

1001 0111 0000 0000 9700 Hex

OR 1100 0000 0000 0000 C000 Hex (the mask)
1101 0111 0000 0000 D700 Hex (the result)

An XOR mask complements (reverses) selected bits of
an integer quantity without affecting the other bits of
that quantity. For example, to complement the most-
significant 2 bits in 9700 Hex, use XOR with a mask of
C000 Hex; that is, all zeros, except for the positions to
be complemented:

1001 0111 0000 0000 9700 Hex

XOR 11000000 0000 0000 €000 Hex (the mask)
0101 0111 0000 0000 5700 Hex (the result)

Strings and relational
operators

Portfolio PowerBASIC lets you compare string data.
String expressions can be tested for equality, as well as
for “greater than” and “less than” alphabetic ordering.

50

LR s

P

C2 portiolio PowerBasic

Two string expressions are equal if and only if they
contain exactly the same characters in exactly the same
order. For example,

as - I'CA'I'"
PRINT a$ ="CAT", a$ = "CATS", a$ = "cat"
Output: -1 0 0

(true, false, false)

String ordering is based on two criteria: first, the ASCII
values of the characters they contain, and second, the
length of the strings.

For example, the letter A is less than the letter B be-
cause the ASCII code for A, 65, is less than the code for
B, 66. Note, however, that B is less than a because the
ASCII code for each lowercase letter is greater than the
corresponding uppercase character (exactly 32 greater).
When comparing mixed uppercase and lowercase
information, use the UCASES or LCASES functions to keep
case differences from interfering with the test.

cityl$ = "Seattle"

city2$ = "Tucson"

IF UCASES(city1$) > UCASES(city2$) THEN
PRINT city1$

ELSE
PRINT city2$

END IF

city1$ = UCASES(city1$)

city2$ = UCASE$(city2$)

IF city1$ > city2$ THEN
PRINT city1$

51

C portinlio PowerBasic

ELSE
PRINT city2$
END IF

Note the difference between the two sets of statements.
In the first case, the string variables city1$ and city2$
are converted to uppercase for the comparison only, so
the first IF/THEN prints Tucson. In the second case, the
conversion is performed on the variables themselves,
so the result will be TUCSON.

Length is important only if both strings are identical up
to the length of the shorter string, in which case the
shorter one evaluates as less than the longer one; for
example, CAT is less than CATS.

Signed and unsigned
infeger representation

Four Portfolioc PowerBASIC functions, STRPTR, STRSEG,
VARPTR, and VARSEG, return floating point values
instead of integers as you might expect. The values

returned by these functions are always positive integers

in the range 0..65535 (0000..FFFF hex), but they are
stored as floating point numbers since Portfolio
PowerBASIC's integer variables can only contain
numbers in the range —-32768..+32767 (which also

represents 0000..FFFF hex). Normally, you will be using

these functions in conjunction with BINS, DEF SEG, HEXS,

52

.

UULTTETER TS

2 portiolio PowerBasic

, OCT$, OUT, PEEK, POKE, and REG, all of which can
handle either representation, accepting floating point
values in the range -32768..+65535 and interpreting
-32768..-1 as +32768..+65535. This is compatible with
PowerBASIC for the IBM PC.

There may be times, however, when you wish to store a
value returned by one of these functions in an integer
variable. Using the following DEF FN, you can create a
signed integer value in the range —-32768..+32767 from
an unsigned value of 0..65535:

DEF FNSigned % (Unsigned!)
IF Unsigned! > 32767 THEN
FNSigned% = Unsigned! - 65536
ELSE
FNSigned% = Unsigned!
END IF
END DEF

The resulting signed integer representation can be
stored in an integer variable and manipulated with
logical operators like AND and OR.

s . =il

C® portivlio PowerBasic

SCOM metastatement

$COM allocates space for the serial communications port
receive buffer.

$COM size

This metastatement sets the size of the serial
communications buffer. size is an integer constant
defining the buffer capacity in bytes (0 to 32767). size
must be in increments of 16 bytes. If a sCOM
metastatement is not present in your program, the
buffer is allocated to the default size of 256 bytes. The
$COM metastatement should only be used once in any
program, before any executable source code.

See also: OPEN COM

SSTACK metastatement

$STACK declares the size of the run-time stack.
$STACK size

size is a numeric constant from 512 to 32766 (bytes).
$STACK determines how much run-time memory will be
devoted to the stack. The stack is used for return
addresses, parameter passing, local variables during
procedure and function calls, and within structured
statements (FOR/NEXT, WHILE/WEND, etc.).

+

L

C& portiolio PowerBasic

The default stack size is 1024 bytes. You may want to
allocate more stack space if your program is heavily
nested, uses many local variables, or performs
recursion. The FRE function allows you to figure out
how much stack space your program needs; it returns
the smallest amount of stack space which was ever
available during the execution of your program. The
$STACK metastatement should only be used once in any
program, before any executable source code.

See also: FRE

ABS function

ABS returns the absolute value of its argument.

y = ABS(numeric expression)

The absolute value of a number is its positive value. For
example, the absolute value of -3 is 3, and the absolute
value of +3 is also 3.

ASC function

ASC returns the ASCII code of the first character in its
argument.

y = ASCl(string expression)

C® portfolio PowerBasic i

ASC returns the ASCII code (0 to 255) of the first char-
acter of string expression. The acronym ASCII stands for
American Standard Code for Information Interchange,
a standardized code in which the numbers between 0
and 255 are used to represent the upper- and lowercase
letters, the numerals 0 to 9, punctuation marks, and
other symbols used in data communication. CHR$ does
the reverse of ASC (it produces the one-character string
corresponding to its ASCII code argument).

Restrictions: The string expression passed to ASC may
not be a null (empty) string. If it is, run-time error 5
(“Illegal function call”) is generated.

See also: CHRS

ATN function

ATN returns the trigonometric arctangent of its
argument.
y = ATN(numeric expression)

ATN returns the arctangent (inverse tangent) of numeric
expression; that is, the angle whose tangent is numeric
expression.

The result, as with all operations involving angles in
Portfolio PowerBASIC, is in radians rather than degrees.
Although most people are accustomed to measuring
angles in degrees, the radian is a more convenient mea-
surement for mathematical and trigonometric oper-

56

 aaaaaatiet

C® portfolio PowerBasic

ations. One radian is defined as the angle at the center
of a circle that subtends an arc equal in length to one
radius. Since for all circles, using the constant r,

circumference/radius =2*x

the length of the circumference of a circle is equal to 2
* 1t * radius, and the angle of a full circle (360 degrees) is
equal to 2 * n radians. If you place 0 radians on the
positive x-axis and measure counterclockwise, you
have:
Figure 1.2
§0= = /2 radians

45= = /4 radians

180= = radians = 0 radians

270= = 3 /2 radians

If you're more comfortable with degrees, radians can
be converted to degrees by multiplying the radian
value by 57.2958. For example, the arctangent of
0.23456 can be converted this way:

t= ATN(.23456) ‘t=0.230395... (radians)
t=57.2958 * ATN(.23456) ‘t=13.200... (degrees)

To convert degrees to radians, multiply by 0.01745333.
For example,

57

C® Portfoio PowerBasic

14 degrees = (0.01745333 * 14) radians
= 0.24435 radians

Rather than memorizing the radians/degrees conver-
sion factors, calculate them for yourself by remember-
ing this relationship: 2n radians equals a full circle (360
degrees), so 1 radian is 180/n degrees. Conversely, 1
degree equals nt/180 radians.

n is a transcendental constant, meaning that it has an
infinite number of decimal places. To 15-place accuracy,
adequate for most applications, © = 3.141592653589793.
This value can be calculated with the expression

piff =4* ATN(1)

Degrees-to-radians and radians-to-degrees conversions
are good applications for user-defined functions.

The ATN function always returns a double-precision
result.

See also: COS, SIN, TAN

BEEP statement

BEEP makes the speaker sound.

BEEP

BEEP plays a single quarter-second, 800-Hz tone
through the computer’s built-in speaker.

See also: TONE

.. 48

A

1
i

© Portolio PowerBasic

BINS function

BINS returns a string that is the binary (base 2) represen-
tation of its argument.

s$ = BINS(numeric expression)

numeric expression must be in the range -32768 to 65535;
if it is outside this range, error 6 (“Overflow”) is
generated. Any fractional part of numeric expression is
rounded before the string is created. If numeric ex-
pression is negative, BINS returns the two's complement
of the binary representation of the corresponding
positive value. The two’s complement is formed by first
reversing all bits (all Os become 1s and vice versa) and
then adding 1.

Thus, for —12959:

0011 0010 1001 1111 * +12959

1100 1101 0110 0000 reverse all bits
+1 ‘add1

1100 1101 0110 0001 ’ -12959

Because of the use of two’s complement binary form to
represent negative numbers, some bit patterns (those
with bit 16 equal to 1) can represent two different
values depending on whether they are interpreted as a
two's complement or straight binary. Specifically,

59

l

2

C® Portiolio PowerBasic

BINS(-32768) = BIN$(32768) = 1000000000000000
BINS$(-32767) = BIN$(32769) = 1000000000000001

BINS(-2) = BINS$(65534) = 1111111111111110
BIN$(-1) = BIN$(65535) = 1111111111111111

See page 52 for more about converting between these
representations.

See also: HEXS, OCTS

CALL statement

CALL invokes a procedure.
CALL procname [(parameter list)]

procname is the name of a procedure defined elsewhere
in the program with SUB/END SUB. parameter list is an
optional, comma-delimited list of variables to be passed
to procname. When the code in a procedure has finished
executing, control passes to the statement immediately
following the CALL.

The number and type of arguments passed must agree
with the parameter list in procname’s definition; other-
wise, a compile-time “Parameter mismatch” error
occurs. Procedure arguments must only consist of
scalar (non-array) variables; neither constants,
expressions, individual array elements, nor whole

60

S

CB poriolio PowerBasic

arrays, may be passed as arguments. Each argument is
passed by reference, meaning that the procedure is
passed the address of the parameter and the parameter
can be modified by the procedure.

See also: SUB

CALL INTERRUPT statement

CALL INTERRUPT invokes a system interrupt.
CALL INTERRUPT n

n is an integer expression specifying the interrupt to be
triggered, from 0 to 255. Just before the interrupt
handler receives control, the processor’s registers are
loaded with the data in the register buffer (set using the
REG statement). When the interrupt handler terminates
and control returns to the program, the register buffer
(which can be read using the REG function) is loaded
with the data in the processor’s registers. At any time,
this buffer contains the data which was in the
processor’s registers at the completion of the most
recent CALL INTERRUFT statement.

The Atari Portfolio Technical Reference Manual contains
complete information on the many functions available
through the CALL INTERRUPT mechanism.

Restrictions: Interrupt 97 (61 hex) is used internally by
the Portfolio. Interrupts 0, 4, 36 (24 hex), 98 (62 hex),
and 99 (63 hex) are used internally by the Portfolio

6

CB portiolio PowerBasic

PowerBASIC system. In addition, if your program
performs serial communications, interrupt 12 (0C hex)
is used internally by Portfolio PowerBASIC. Do not
attempt to access these interrupts with the CALL
INTERRUPT statement.

See also: REG

CHDIR statement

CHDIR changes the current default directory (as does
the DOS CHDIR command).

CHDIR path

path is a string expression conforming to DOS path-
naming conventions. If path does not indicate a valid
directory on the current drive, run-time error 76 occurs,
“Path Not Found.”

The current directory is the location where your pro-
gram is to perform file operations by default. Thus,

CHDIR "\DATA"
OPEN "MYFILE. TXT" FOR INPUT AS #1

opens a file called MYFILE.TXT in the directory
\DATA.

A program that changes the current directory from
within Portfolio PowerBASIC also changes Portfolio
PowerBASIC's active directory.

62

m{m&mﬂm{w{

|

G2 portiolio Powerbasic

Restrictions: CHDIR cannot be used to change the
default disk drive.

See also: MKDIR, RMDIR

CHRS function

CHR$ converts an ASCII code into the corresponding
ASCII character.

s$ = CHRS(integer expression)

CHRS$ returns a string containing a single character
which represents the ASCII code (infeger expression)
argument. The argument must be a value between 0
and 255. CHR$ complements the ASC function, which
returns the ASCII code of a string’s first character. CHRS
is handy for creating characters that are difficult to
enter at the keyboard, such as graphics characters for
screen output and control sequences for printer output.

See also: ASC

CIRCLE statement

CIRCLE draws or erases a circle on the graphics screen.

CIRCLE (x,y), Radius [,color]

(x,y) specifies the screen coordinates of the center of the
circle. x must be a numeric expression which evaluates

J

C® Portiolio PowerBasic
to a value between 0 and 239. y must be a numeric
expression which evaluates to a value between 0 and
63. Radius is a numeric expression which specifies the
radius of the circle in screen pixel units. Any points on
the circle which fall outside of the Portfolio’s 240 x 64
screen are not displayed; no run-time error is generated
in this case. color is an optional numeric expression
which evaluates to either 0 or 1. Using 1 for color causes
the circle to be drawn, while 0 causes it to be erased.

See also: LINE, POINT, PSET, SCREEN

CLEAR statement

CLEAR zeros all variables.
CLEAR

CLEAR sets all numeric variables to zero and all string
variables to the null string.

Warning! A CLEAR statement inside of a loop clears the
counter each time it is executed, causing an endless
loop.

CLOSE statement

CLOSE closes a file.
CLOSE [[#filenum [, [#Ifilenuml]...]

T TTTTE LTI T

B portfolio PowerBasic

CLOSE ends the relationship between a file handle (or
number) and the disk file that was associated with the
handle by an OPEN statement. I/O to that file is con-
cluded, any associated buffer is flushed, and a DOS
CLOSE is performed on it to update the directory entry.
It's good practice to periodically CLOSE files that a pro-
gram writes. This ensures that all the information is
physically written to the disk, and that the file’s
directory entry is properly updated, minimizing the
possibility of data loss in the event of a subsequent
power failure or other problem.

A CLOSE without a file number closes all open files (as
does END).

See also: END, OPEN

CLS statement

CLS clears the screen.

CLS

CLS clears the screen in text or graphics mode and
moves the cursor to the upper left corner (row 1,
column 1).

G2 portiolio PowerBasic

COMMANDS function

COMMANDS returns the command line used to start the
program from DOS.

s$ = COMMANDS$

COMMANDS returns everything that was typed fol-
lowing the program name when the program was
started from the DOS prompt (some DOS manuals refer
to this text as the trailer).

Use COMMANDS to collect run-time arguments, like file
names and program options.

For example, consider a program named FASTSORT
that reads data from one file, sorts it, and puts the
result in a new file. Using COMMANDS lets you specify
the input and output file names when the program is
invoked:

A>FASTSORT cust.dta cust.new

When FASTSORT begins execution, COMMANDS will
hold the string “cust.dta cust.new”. FASTSORT must
include code to parse this string into two file names.

COS function

COs returns the trigonometric cosine of its argument.

y = COS(numeric expression)

TIITLTTTLTTIITTTI et

2 portiolio PowerBasic

numeric expression is an angle specified in radians. To
convert radians to degrees, multiply by 57.2958. To
convert degrees to radians, multiply by 0.017453. For
more information on radians, see the ATN entry.

COs returns a double-precision value that always
ranges between -1 and +1.

See also: ATN, SIN, TAN

CSRLIN function

CSRLIN returns the current vertical position (row num-
ber) of the screen cursor.

y = CSRLIN

CSRLIN returns an integer representing the current
vertical position (row number) of the cursor.

Use the POS function to read the cursor’s horizontal
position (column number). Use the LOCATE statement
to move the cursor to a specific line and column.

See also: LOCATE, LPOS, POS

67

C® portiolio PowerBasic

CVIL;EVS, and CVD
functions

These functions convert string data read from random-
access files to numeric form.

integervar% = CVI(2-byte string)

singlevar! = CVS(4-byte string)

doublevar# = CVD(8-byte string)

These functions are used only for random-access file
processing.

Command Variable Converts to
CvI 2-byte string Integer
cvs 4-byte string Single-precision float
CVD 8-byte string Double-precision float

Because of the way Portfolio PowerBASIC handles
random-access files, numeric values must be translated
into strings (using MKI$ and its sister functions) before
they can be written to disk, and then translated back
into numbers when the file is read. Don’t confuse these
functions with VAL, which takes a string like “3.7" and
turns it into a number.

See also: FIELD, GET, MKI$ and associated functions

68

23113133733 RRRRRRRRRRA"

DATA statement

DATA declares constants in the source code to be read
by READ statements.

DATA constant [,constant]...

constant is a numeric or string constant. Numeric
constants can be floating point or integer. String
constants don’t have to be enclosed in quotes unless
they contain delimiters (commas or colons) or
significant leading or trailing blanks, and can be freely
mixed with numeric constants. For example:

DATA Sprouts,.79,Avocado Burger,2.29,"Shrimp Toast"

A program can contain as many DATA statements as
needed, and they can be located anywhere in the source
code; they need not be on sequential lines. Each DATA
statement can contain as many constants as can fit on a
single line.

At run time, READ statements access the DATA state-
ments in the order in which they appear in the source
program, and individual constants from left to right
within each DATA statement. The most common error
associated with reading DATA statements is improper
synchrony between READ statements and DATA con-
stants, which usually results in the program trying to
load string data into a numeric variable; this generates
a syntax error (run-time error 2). You won'’t get an error
if you load numeric constants into string variables,
even though that is probably not what you intended.

69

C® portiolio PowerBasic i B porioiio PowerBasic

The RESTORE statement lets you reset the READ pointer
so that constants can be reread from the first statement

or any specified DATA statement. If you try to READ
more times than your program has constants in DATA

statements, run-time error 4 results, “Out of data.” No
error is generated, however, if some DATA constants go

unread.

Restrictions: You cannot use underscore continuation

characters in DATA statements. Don’t use the single
quote () to comment a DATA statement; Portfolio
PowerBASIC will think that the last entry and your

comment are part of a single, long string constant. For

example,
DATA cats,dogs,pigs ‘list the animals

is interpreted as containing three string constants:
“cats”, “dogs”, and “pigs ‘list the animals”. You can,
however, safely use REM or the single quote for this
purpose if you precede it with a colon (Portfolio
PowerBASIC’s statement separator):

DATA cats,dogs,pigs :REM list the animals
DATA cows,hogs,frogs :' more animals

See also: READ, RESTORE

DATES system variable

DATES is used to set and retrieve the system date.

DATES =s$ (sets system date according to s$)

70

LU

s$=DATE$ (s$ now contains system date)

Assigning a properly formatted string value to DATE$
sets the system date. You can also assign DATES to a
string variable which stores 10 characters in the form
“mm-dd-yyyy”, where mm represents the month, dd
the day, and yyyy the year.

To change the date, your date string must be formatted
in one of the following ways:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

For example, DATES = "10-17-89" sets the system date to
October 17, 1989.

See also: TIMES

DEF FN/END DEF
statement

DEF FN/END DEF defines a function.

Single-line function:
DEF FNIdentifier [(argument list)] = expression

71

e e o W e

C& portiolio PowerBasic

Multi-line function:
DEF FNIdentifier [(argument list)]

: {statements}

iEXTI' DEF]

[FNIdentifier = expression]
END DEF

Identifier is the name of the function. It must be unique:
no other variable, function, procedure, subroutine, or
label can share it.

argument list is an optional, comma-delimited sequence
of formal parameters. The parameters used in the
argument list serve only to define the function; they
have no relationship to other variables outside of the
function with the same name.

DEF FN and END DEF bracket and name a subroutine-like
group of statements called a DEF FN function. A DEF
FN function may be passed one or more arguments
(which are passed by value, not by reference). A DEF
EN function returns a value; the type of the value is
determined by the symbol that terminates the
function’s name (for example, a function named
FNCalculate% returns an integer value, FNInterest#
returns a double-precision floating point value, and so
on). A DEF FN function may, therefore, be called from
within any statement that can accept a value of the
function’s type.

72

HHEEEEE ety

|

C® poriolio PowerBasic
Function definitions and program flow

The position of DEF FN function definitions within
your source code is immaterial, although clarity is
served by grouping them together in one area. You
need not direct program flow through a DEF FN
function as an initialization step. The compiler sees
your definitions wherever they might be.

Also, unlike subroutines, execution can’t accidentally
“fall into” a DEF FN function. As far as the execution
path of a program is concerned, function and pro-
cedure definitions are invisible. For example,

t = FNPrintStuff
DEF FNPrintStuff
PRINT "Printed from within FNPrintStuff"

END DEF
END

When this program is executed, the message appears
only once.

Function definitions should be treated as isolated
islands of code; don’t jump into or out of them with

GOTO, GOSUB, or RETURN statements. Within definitions,

however, such statements are legal.

Function and procedure definitions can’t be nested;
that is, it is illegal to define a procedure or function

within a another procedure or function (although a

procedure or function can call other procedures and
functions).

73

C& portiolio PowerBasic

Variables which appear within DEF FN function
definitions have the SHARED attribute; that is, they are
global to the rest of the program.

When a DEF FN function is referenced, the name of the
function (Identifier) must always be preceded by FN:

t = FNMyFunc%(a,b)

Use the EXIT DEF statement to return from a DEF FN
function before reaching its END DEF statement.

See also: END, EXIT, GOSUB

DEFINT, DEFSNG, DEFDBL,
and DEFSTR statements

The DEFtype statements declare the default type for
variable identifiers that begin with specified letters.

DEFtype letter range [letter rangel...

type represents one of the four Portfolio PowerBASIC
variable types: INT (integer), SNG (single-precision
floating point), DBL (double-precision floating point),
and STR (string).

letter range is either a single alphabetic character (A
through Z, case insignificant), or a range of letters (two
letters separated by a hyphen; for example, A-M).

74

13000330000 RR R RN AR

G2 purtiolio PowerBasic

DEFtype tells the compiler that variables and user-
defined functions whose names begin with the
specified letter or range of letters are of the specified
type. This allows you to use variables other than
single-precision floating point in your program without
including type identifiers (for example, % and #).
Normally, when the compiler finds a variable name
without a type identifier, it assumes the variable to be
single-precision floating point. For example, in this
statement, both blint and lemming are assumed to be
single precision:

blint = lemming + 17
If, however, this statement was preceded by
DEFINT b, 1

then blint and lemming would both be integer variables,
as would any other variable whose name started with b
or | in uppercase or lowercase.

Restrictions: A DEFfype statement redefines the type of
any corresponding variables that are already being
used in the program. The example program demon-
strates this rather subtle point.

DEF SEG statement

DEF SEG defines the data segment to be used by the
POKE statement and the PEEK function.

75

J

C® Portolio PowerBasic
DEF SEG [= numeric expression]

numeric expression can range from —32768 to +65535,
and specifies the base address of the memory segment
in which subsequent POKE statements and PEEK
functions will operate. Segments are a part of the
memory addressing method used by Intel 80x86 family
processors. Addresses are normally specified with two
16-bit integers: a segment (as set with DEF SEG) and an
offset into the segment (as specified in POKE or PEEK).
For example, the following code:

DEF SEG = segment
x = PEEK(offset)

retrieves the byte stored at absolute memory address
segment * 16 + offset.

DEF SEG with no argument resets the segment value to
its start-up default value, which is Portfolio
PowerBASIC’s main data segment.

See page 52 for more about positive and negative
representations of the segment value.

See also: PEEK, POKE

DIM statement

DIM declares single- or multi-dimensional arrays.
DIM Var(subscripts) [,Var(subscripts)]...

76

ALECELETETTTTTTTLS

CB portfolio PowerBasic

DIM declares Var to be an array whose type is specified
by appending a type specifier to the name or changing
the default variable type for identifiers beginning with
the same letter by using the DEFtype statement.
subscripts is a comma-delimited list of one or more
integer constants defining the dimensions of the array.
Each dimension begins with element zero. For example,
DIM My Array(20) defines an array of one dimension
that has 21 elements, from MyArray(0) to MyArray(20).
DIM Array3D(5,5,5) defines a 6x6x6 array (with a total
of 216 elements), where each dimension consists of
elements 0 through 5.

Portfolio PowerBASIC sets each element of a numeric
array to zero when a program is first executed, and sets
each element of string arrays to the null string (length
zero). If a CLEAR statement is executed, numeric arrays
are reset to 0 and string arrays to the null string.

If an array variable is used without a preceding DIM
statement, the compiler automatically dimensions it
with a maximum value of 10 for each of its subscripts.
It is good practice, however, to explicitly declare every
array.

See also: CLEAR, FRE

77

4

C& portiolio PowerBasic

DO/LOOP statement

DO/LOOP defines a group of program statements that
are executed repetitively as long as a certain condition
is met.

DO [{WHILE | UNTIL} expression]
statements [EXIT LOOP]

{LOOP | WEND} | {WHILE | UNTIL} expression}

expression is a numeric expression, in which nonzero
values represent logical TRUE and zero values
represent logical FALSE.

DO/LOOFP statements are extremely flexible. They can be
used to create loops for almost any imaginable pro-
gramming situation. They allow you to create loops
with the test for the terminating condition at the top of
the loop, the bottom of the loop, both places, or neither.
A DO statement must always be paired with a matching
LOOF statement at the bottom of the loop. Failure to
match each DO with a LOOP results in a compile-time
€IToT,

The WHILE and UNTIL keywords are used to add tests to
a DO/LOOP. Use the WHILE if the loop should be re-
peated if expression is TRUE, and terminated if ex-

78

HH

2 portiolio PowerBasic

pression is FALSE. UNTIL has the opposite effect; that is,
the loop will be terminated if expression is TRUE, and
repeated if FALSE.

For example,

DO WHILEa =13
{statements}
Loor

executes the statements between DO and LOOP as long
as ais 13. If a is not 13 initially, the statements in the
loop are never executed. In contrast,

DOUNTILa=13
(statements}
Loor

executes the statements between DO and LOOP as long
as a is not 13. If a equals 13 initially, the loop is never
executed.

At any point in a DO/LOOP you can include an EXIT
LOOP statement. This is equivalent to performing a

GOTO to the instruction after the terminating LOOP

statement. For more information, see EXIT.

The WHILE/WEND statements can be used in many
cases to perform the same functions as DO/LOOP. For
example, this DO/LOOP:

DOWHILEa<b
{statements}
Loor

79

tl

C portiolio PowerBasic
has the same effect as this WHILE/WEND loop:

WHILEa<b
{statements)
WEND

DO loops can be nested with other DO loops and with
WHILE/WEND and FOR/NEXT loops. Nesting must be
complete; that is, an outer loop must contain both the
start and finish of any inner loops. The following code
will not compile because the WHILE/WEND loop is not
completely within the DO loop:

DO WHILE X <10
WHILE Z > 50
[statements)

LOOP
WEND

When using nested loops, be careful that inner loops do
not modify variables that are used by the outer loop’s
terminating condition test. For example, the following
code was intended to print out all 20 elements of a 2x10
array (dimensioned arry(9,1)):

Countl =0
DO WHILE Countl < 10
FOR Count2=0TO 1
PRINT arry(Count1,Count2)
Countl = Countl + 1
NEXT Count2
LOOP

Because Countl is incremented within the inner loop,
which executes twice for each pass through the outer

80

LLLLLLLLSEEEEEELL

C® portolio PowsrBasic

loop, this code would not print all the array values, but
would only print out the values for arry(0,0), arry(1,1),
arry(2,0), arry(3,1) and so on. By moving the Count1 =
Countl + 1 statement to just below the NEXT Count2
statement, the code functions as intended.

If an EXIT LOOP statement is used within nested loops, it
exits only the current loop, not the entire nest.

The Portfolio PowerBASIC logical operators can be used
to construct multiple test conditions for loop control.
For example,

DO WHILEx <10 AND y <10
{statements}
LOOP

is executed only as long as both x and y are less than 10.
Similarly, the loop

DOUNTILX>100RY>10
{statements)
LOOP

is executed until either x or y (or both) is (are) greater
than 10.

Although the compiler doesn’t care about such things,
it's a good idea when writing your source code to
indent the statements between DO and LOOP. The same
is true of FOR/NEXT loops, WHILE/WEND loops, and
multi-line IF statements. Such indenting makes the
appearance of your source code reflect the logical
structure of your program, resulting in greater read-
ability. Indenting is particularly valuable when nesting

81

gl

C® portfolio PowerBasic

multiple loops of the same type, since it makes it easier
to see which LOOP goes with which DO.

See also: EXIT, FOR/NEXT, IF, WHILE/WEND

END statement

END terminates execution of a program or defines the
end of a structured block.

END [{DEF|IF | SUB}]

END without arguments terminates program execution.
An END statement can be placed anywhere in a pro-
gram, and there can be more than one. Encountering an
END causes a program to close all open files and return

to DOS.

An END statement isn’t strictly required by the com-

piler, although using it is good practice. If a program
simply runs out of statements to execute, an implied
END operation is performed.

END followed by one of the DEF, IF, or SUB keywords
defines the end of a structured block. END does not
terminate program execution if it is followed by one of
these keywords.

See also: CLOSE, DEF FN, IF, SUB

82

LLLEEEEEEREELLLLS

C portiokio PowerBasic

EOF function

EOF returns the end-of-file status of an opened file.
y = EOF(filenum)

Use EOF to determine when the end of a file has been
reached while reading its data. filenum is the file
number specified when the file was OPENed; if it does
not refer to a valid, open file, a run-time error occurs.
EOF returns logical TRUE (non-zero) if the end of the
specified file has been reached; otherwise, it returns
logical FALSE (zero).

For a sequential input file, end-of-file has been reached
if there is no more data to be read from the file or if an
EOF character (ASCII code 26) has been read.

For random-access and binary files, end-of-file has been
reached if the most recent file read operation was
unable to read as many characters as requested (or as
many as required by the random-access buffer size).

For a communications file, EOF returns TRUE if the
communications buffer for that file is empty; otherwise
it returns FALSE.

83

C® portiolio PowerBasic

ERL and ERR functions

ERL and ERR return the program line number and error
code of the most recent Portfolio PowerBASIC run-time
error.

y=ERL

y =ERR

ERR returns the error code of the most recent run-time
error. This number can be tested in an error-trapping
routine (declared with the ON ERROR statement), so that
appropriate error-handling code can be executed. Use
the RESUME (label | line number} statement to continue
program execution after error trapping.

ERL returns the line number of the most recent error. If
the error occurs in a statement without a line number,
ERL returns the number of the most recently executed
line which had a line number. If no numbered lines
have been executed, ERL returns zero.

See also: ERROR, ON ERROR, RESUME

ERROR statement

ERROR simulates the occurrence of a specific run-time
error.

ERROR errcode

UL ELEREELLLLL

B portiolio PowerBasic

errcode is an integer expression from 0 to 255. If errcode
is one of Portfolio PowerBASIC's predefined run-time
error codes, then ERROR causes your program to behave
as though that error had actually occurred. Use the
ERROR statement as an aid in debugging error-trapping
routines.

To define your own error codes, use values for errcode
that aren’t used by Portfolio PowerBASIC. If you don't
define an error-handling procedure for these new cus-
tom error codes, your running program will display the
message:

Errorn

where 7 is the error code. If any numbered lines have
been executed prior to the ERROR statement, the line
number of the most recently executed numbered line
will be displayed in the error message generated:

10 PRINT
ERROR 17
END

‘displays "Error 17 at line 10"

See also: ERL, ERR, ON ERROR, RESUME

EXECUTE statement

EXECUTE transfers control to the specified program.
EXECUTE filespec

85

i W

2 portioiio PowerBasic

filespec is a string expression which follows standard
DOS file-naming conventions and represents the
program which Portfolio PowerBASIC will transfer
control to. EXECUTE can run .EXE, .COM, or .RUN files.
It cannot run .BAT files, or any other sort of file which
would require a DOS command interpreter (such as the
IBM PC’s COMMAND.COM file) to be invoked. When
the program is finished executing, control returns to
DOS, rather than to the program which performed the
EXECUTE. If the file to be executed is not present, no
error is generated; control simply returns to DOS.

EXIT statement

EXIT transfers program execution out of a structure.
EXIT {DEF | FOR | IF | LOOP | SUB}

The EXIT statement lets you leave a structure pre-
maturely. The type of structure being EXiTed must be
included as part of the EXIT statement, as follows:

EXIT option Structure exited

DEF DEF FN /END DEF function definition

FOR FOR/NEXT !ooE

IF IF/END IF bloc

LOOP DO/LOOP or WHILE/ WEND loop

SUB SUB/END SUB procedure definition
86

A

3

S portiolio PowerBasic

Using EXIT is preferred over using GOTO. Note the
difference between EXIT and END: EXIT operates during
program execution to transfer control out of a structure;
END operates during program compilation to mark the
end of the structure’s source code.

Restrictions: When using EXIT to leave a function, you
must assign the function a result before EXIT is executed
or the value returned by the function will be undefined.

See also: DEF FN, DO/LOOP, END, FOR /NEXT, IF, SUB,
WHILE/WEND

EXP function

The EXP function returns e (2.718282...) raised to a
power.

y = EXP(x)

EXP returns e to the xth power, where x is a numeric
expression and e is the base for natural logarithms,
approximately 2.718282. You would get the same result
with the statement e”x. One thing you can do with EXp
is calculate e itself:

e = EXP(1)
EXP returns a double-precision result.

See also: LOG, SQR

87

CB portfolio PowerBasic

FIELD statement

FIELD defines the variables of a random-access file
buffer.

FIELD [#]filenum, width AS string-var [,width AS
string-varl...

filenum is the number used when the file was opened.
width is the number of bytes allocated to each field
variable. string-var is the field variable itself, which
must be a string.

FIELD defines a mapping between string variables and
the I/O buffer of a random-access file. Once used in a
FIELD statement, string variables gain a special status as
“field variables.” They should only be assigned to
using LSET and RSET in preparation for writing to the
indicated random-access file.

Restrictions: A string identifier used in a FIELD state-
ment should never be used on the left side of an
assignment statement. Doing so disassociates the
identifier from the random-access file’s field definitions,
causing it to revert to a normal string.

See also: GET, LSET, PUT, RSET

88

. -

L

C® Portolio PowerBasic

FOR/NEXT statement

FOR and NEXT define a loop of program statements
whose execution is controlled by an automatically
incrementing or decrementing counter.

FOR Counter = start TO stop [STEP increment]

: {statements}

NEXT [Counter [,Counter]...]

Counter is a numeric variable serving as the loop
counter; sfart is a numeric expression specifying the
value initially assigned to Counter; stop is a numeric
expression giving the value that Counter must reach for
the loop to be terminated; increment is an optional
numeric expression defining the amount by which
Counter is incremented with each loop execution. If not
specified, increment defaults to 1.

When a FOR statement is encountered, start is assigned
to Counter and Counter is tested to see if it is greater
than (or, for negative increment, less than) stop. If not,
the statements within the FOR /NEXT loop are executed,
increment is added to Counter, and Counter again tested
against stop. The statements in the loop are executed
repeatedly until the test fails, at which time control
passes to the statement immediately following the
NEXT.

89

e [A

2 portiolio PowerBasic

When using floating-point values with FOR/NEXT, be
sure to allow for round-off errors when mixing
numbers of different precisions.

FOR/NEXT loops run fastest when Counter is an integer
variable and start, stop, and increment are integer
constants. The value of Counter is available like any
other variable within the loop. It is wise to avoid
explicitly modifying the value of Counter within the

loop. If you need to exit the loop prematurely, use an
EXIT FOR statement. If you use the maximum value of

an integer (32767) as a stopping condition, you'll get
an overflow error message when the variable is
incremented in the NEXT statement.

The body of the loop is skipped altogether if the initial
value of Counter is greater than stop (or, for a negative
increment, if Counter is less than stop).

FOR/NEXT loops can be nested within other FOR/NEXT
loops. Be sure to use unique counter variables and to
make sure that the inner loop’s NEXT statement occurs
before the outer loop’s NEXT. This code has crossed
loops and won’t compile:

FORn=1TO 10
FORm=1TO 20

NEXT n
NEXT m

If multiple loops end at the same point, a single NEXT
statement containing each counter variable suffices:

90

-

T

)

C® portolio PowerBasic

FORn=1TO 10
FORm=1TO20

NEXT m, n

The counter variable in the NEXT statement can be
omitted altogether, but if you include it, it must be the
right variable. For example,

FORn=1TO 10

NEXT ‘NEXT n would work too, but not NEXT m

Although the compiler doesn’t care about such things,
indent the statements between FOR and NEXT by two
or three spaces to set off the structure of the loop.

If a NEXT is encountered without a corresponding FOR
(or vice versa), a compiler error is generated.

FRE function

FRE returns the amount of free memory available to
your program.

freememory = FRE({01-11-2))

FRE with an argument of zero returns a value repre-
senting the number of bytes available to be allocated

Q1

T T T —

C portiolio PowerBasic

as a single string, up to the maximum string size
(32750). FRE(-1) returns the number of bytes of
available memory. FRE(-2) returns the smallest amount
of stack space (in bytes) which was ever available
during the execution of your program.

FRE(0) tells you how large the largest continuous block
of unused string memory is, up to the maximum
string size. For example, if you have 60K of memory
available while your program is running, FRE(0) will
return 32750 (the maximum string size). If you have
only 16000 bytes of memory available however, FRE(0)
will return 16000. FRE(0) does nof tell you the total
amount of memory available in the machine for
strings.

See also: $5TACK, CLEAR

GET statement

GET reads a record from a random-access file.
GET [#lfilenum [, recnum]

filenum is the number under which the file was
opened, and recnum is the record to be read. If recnum
is omitted, then the next record in sequence (following
the one specified by the most recent GET or PUT) is
read; if the file was just opened, the first record is
read.

Q2

10

TLLITEEEEEEEEEEHS

CB portiolio PowerBasic

GET reads the indicated record from the file and puts
the data into the variable(s) of the random-access file
buffer associated with that file.

If recnum is greater than the number of records in the
file, no error occurs but unpredictable data may be
read in. Use the EOF function to avoid GETting past the
end of the file.

See also: EOF, FIELD, LOC, LSET, PUT, RSET

GETS function

GETS$ reads a string from a file opened in binary mode.
GETS [#] filenum, Count, string variable

Count is an integer expression ranging from 0 to the
maximum string size (32750). GET$ reads Count
characters from file number filenum and assigns them
to string variable. File filenum must have been opened
in binary mode. Characters are read starting at the
current file pointer position, which can be set with the
SEEK statement. When the file is first opened, the
pointer is at the beginning of the file (position 0). After
GETS, the file pointer position will have been advanced
by Count bytes.

GETS$, PUTS, and SEEK provide a low-level alternative to
sequential and random-access file-processing tech-
niques, allowing you to deal with files on a byte-by-
byte basis.

93

|

C portiolio PowerBasic
See also: EOF, LOC, LOF, OPEN, PUT$, SEEK

GOSUB statement

GOSUB invokes a subroutine.
GOSUB {label | linenumber)

GOsUB causes Portfolio PowerBASIC to jump to the
statement prefaced by label or linenumber, after first
saving its current location on the stack. Executing a
RETURN statement returns control to the instruction
immediately following the GOSUB.

When using GOSUB, be sure that each subroutine
returns to its caller gracefully through a RETURN state-
ment. Run-away GOSUBs that loop upon themselves
will eat up large chunks of stack space and eventually
cause the program to run out of memory, or at least
withhold memory from the program that would
otherwise be available.

As useful as GOSUBs can be, Portfolio PowerBASIC's
procedures and functions can do the work of sub-
routines with the added benefits of recursion,
parameter passing, and local variables, within bodies
of enclosed, protected code.

See also: $STACK, DEF FN, ON/GOSUB, SUB, RETURN

94

e A ——

10

SERAARARASRRRA IR

B portiolio PowerBasic

GOTO statement

GOTO transfers program execution to the statement
identified by a label or line number.

GOTO {label | linenumber}

GOTO causes program flow to jump unconditionally to
the code identified by label or linenumber. GOTO differs
from GOSUB and other similar control statements in
that, after execution of a GOTO, the program retains no
memory of where it was before it executed the jump.

Used with care, GOTOs can be a fast, effective pro-
gramming device. Used carelessly, they can choke a
program with tangled spaghetti-like strands of code
that can be almost impossible to puzzle out (especially
months or years after they are written).

Modern structured programming practice discourages
the use of GOTOs. In fact, the GOTO statement is one of
the major reasons why many programming “pundits”
disparage BASIC in favor of other languages such as
C. While these complaints were valid in regard to
early versions of BASIC, Portfolio PowerBASIC's
functions and procedures provide sufficient struc-
tured control of program flow. You'll rarely, if ever,
need to use GOTO. The FOR/NEXT, WHILE/ WEND, DO/
LOOP, and IF block structures, as well as the EXIT
statement, assist in GOTO reduction.

See also: CALL, DO/LOOP, EXIT, FOR/NEXT, GOSUB/
RETURN, IF block, SUB, WHILE/ WEND

95

2 portiolio PowerBasic

HEXS function

HEX$ returns a string that is the hexadecimal (base 16)
representation of its argument.

s$ = HEXS$(numeric expression)

numeric expression must be in the decimal range -32768
to 65535; if outside this range, run-time error 6 (over-
flow) is generated. Any fractional part of numeric
expression is rounded before the string is created.

Hexadecimal is a number system that uses base 16
rather than base 10 (used by the everyday decimal
system). In hexadecimal, the digits 0 to 9 represent the
same numbers as in decimal, and the letters A to F
represent the decimal values 10 to 15. Hexadecimal
notation is commonly used in programming because
the binary bit patterns used internally by computers
translate directly into hex digits. A single hex digit
represents 1 nibble (4 bits), two hex digits represent
one byte, and so on.

96

ATILLILTELEeeteeees

C® portiolio PowerBasic
Binary Octal Decimal Hex
0000 0000 0 0 0
0000 0001 1 1 1
0000 0111 7 7 7
0000 1000 10 8 8
0000 1001 11 9 9
0000 1010 12 10 A
0000 1011 13 11 B
0000 1100 14 12 c
0000 1101 15 13 D
0000 1110 16 14 E
0000 1111 17 15 F
0001 0000 20 16 10
11111110 376 254 FE
1111 1111 377 255 FF

HEX$ returns the two's complement form of a negative
argument (see the BINS function entry and page 52 for a
discussion of two’s complement arithmetic).

See also: BINS, OCT$

IF statement

IF tests a condition and executes one or more program
statements only if the condition is met.

97

CB portiolio PowerBasic

IF integer expression THEN (statements} [ELSE
{statements)]

If integer expression is TRUE (evaluates to a nonzero
value), the statements following THEN are executed and
the statements following the optional ELSE are not
executed. If integer expression is FALSE (zero), then the
statements following THEN are not executed and the
statements following the optional ELSE are executed. If
the ELSE clause is omitted, execution continues with the
next line of the program if integer expression is FALSE.

integer expression will often be a result returned by a
relational operator as shown here:

IF Inc > Exp THEN PRINT A% ELSE PRINT B%

It can also be a single flag value. For example, your
program could set the variable PrinterOn to 1 if the

printer is available, and to 0 if it isn’t, then use an IF
statement to control output:

IF PrinterOn THEN LPRINT answer$

integer expression can include the logical operators AND
and OR, as in:

IF (a=b) AND (c = d) THEN PRINT "They are equal"

The IF statement and all its associated statements,
including those after an ELSE, must appear on the same
logical program line. The following is therefore illegal:

IFa<bTHENt=15:u=16:v=17
ELSEt=17:u=16:v=15

98

Y

LTI SR EEEEEEE

B portiolio PowerBasic

because the compiler treats the ELSE statement as a
brand-new statement unrelated to the one above it. If
you have more statements than can fit on one line, you
can use the line continuation character, the underscore
(), to spread a single logical line over several physical
lines. For example, the following is a legal way of
restating the last example:

IFa<bTHENt=15:u=16:v=17 _
ELSEt=17:u=16:v=15

A colon must not appear before the ELSE keyword. For
example, the following statement won’t compile:

IFa<bTHENc=d:ELSEe=f

A better method of programming long and complex IF/
THEN constructs is to use the IF block statement.

See also: IF block

IF block statement

The IF block creates IF/THEN/ELSE constructs with
multiple lines and /or conditions.

IF integer expression THEN
{statements}

[ELSEIF integer expression THEN
{statements}]

[ELSE

{statements]]

END IF

C® portolio PowerBasic
In executing IF block statements, the truth of the integer
expression in the initial IF statement is checked first. If it
evaluates to FALSE (zero), each of the following ELSEIF
statements is examined in order (there can be as many
ELSEIF statements as desired). As soon as one is found
to be TRUE, Portfolio PowerBASIC executes the state-
ment(s) following the associated THEN and before the
next ELSEIF or ELSE, then jumps to the statement just
after the terminating END IF without making any fur-
ther tests. If none of the test expressions evaluates to
TRUE, the statement(s) in the ELSE clause (which is
optional) are executed.

Note that there must be nothing following the THEN
keyword on the first line of an IF block; that’s how the
compiler distinguishes an IF block from a conventional
IF statement. There must also be nothing on the same
line as the ELSE.

IF block statements can be nested; that is, any of the
statements after any of the THENs may contain IF
blocks. Although the compiler doesn’t care, the clarity
of source code is improved by indenting the statements
controlled by each test a couple of spaces, as shown in
the example.

IF block statements must be terminated with END IF.
Note that END IF requires a space and ELSEIF does not.

See also: END, IF

100

ﬁi

ATTTLTELEELTTTTTiLte

CB portiolio PowerBasic

INKEYS function

INKEYS$ reads a character from the keyboard without
echoing the character to the screen.

5§ = INKEY$

INKEYS$ returns a string of zero, one, or two characters
that reflects the status of the keyboard buffer.

A null string (LEN(s$) = 0) means that the buffer is
empty. A string of length one (LEN(s$) = 1) means that
an ASCII key was pressed and the string contains the
ASCII character.

A string of length two (LEN(s$) = 2) means a non-ASCII
key was pressed. In this case, the first character in the
string has a value of 0, and the second is an extended
keyboard code that represents one of the keyboard’s
non-ASCII keys (such as a function or an arrow key).

INKEYS is a flexible mechanism for getting user input
into your program without the restrictions of the INPUT
statement. Since INKEY$ doesn’t wait for a character to
be pressed before returning a result, you will usually
use it within a loop in a low-level routine, continuously
checking it and building an input string to be checked
by higher-level routines. Sometimes it is desirable to
empty the keyboard buffer before accepting input to be
sure that inadvertent keystrokes are not included. For
example:

101

CB portiolio PowerBasic

‘empty keyboard buffer
WHILE INKEY$ <> "": WEND
’ prompt for input, get characters one at a time
PRINT "Enter some characters followed by <RTN>"
‘endless loop
DO
‘get one character
Char$ = INKEY$
‘exit if it's RTN
IF Char$ = CHR$(13) THEN EXIT LOOP
" add it to input string
InputString$ = InputString$ + Char$
LoorP
PRINT InputString$
END

INKEYS$ passes all keystrokes, including control key
combinations (like Cirl-Tab, Ctrl-RTN, and Ctrl-Backspace),
to your program without displaying or processing
them, with the following exception:

m Cir-Alt-Del causes a system reset.
See also: INPUT, INPUT$, INSTAT, LINE INPUT

INP function

INP reads a byte from a processor I/0 port.
y = INP(portno)

INP returns the byte read from I/O port portno, where
portno indicates a hardware input port in the range

102

PIETLELLEELLTLLTT0TL

C® portfolio PowerBasic
-32768 to +65535. If no device is attached to the
specified port, the return value is undefined.

INP is used for reading status information presented by
various hardware subsystems, such as communications
ports and other I/O devices. See the Portfolio’s
technical reference manual for port assignments.

The OUT statement is used to write to an I/O port.
See also: OUT

INPUT statement

INPUT prompts the user for keyboard entry and assigns
the input to one or more variables.

INPUT [;] [prompt string {;| ,}] variable list

prompt string is an optional string constant. variable list
is a comma-delimited sequence of one or more string or
numeric variables. You can read up to 255 characters
into each string variable.

INPUT displays prompt string on the screen, waits for the
user to enter data from the keyboard, and assigns the
data to the variable(s) in variable list. If you include a
semicolon after prompt string, Portfolio PowerBASIC
outputs a question mark after the string. Use a comma
instead to suppress the question mark.

C® portiolio PowerBasic

Data entered from the keyboard must match the types
of the variables in variable list; that is, nonnumeric char-
acters are unacceptable for numeric variables.

If a single INPUT statement prompts for more than one
variable, then you must enter the proper number of
values on a single line, separated by commas or spaces.
For example, in response to

INPUT A%,B%,C%
you could enter
100,200,300

If a semicolon appears immediately after the INPUT
keyword, the cursor will remain on the same line when
you press ATN to terminate the response. Otherwise, a
carriage-return/linefeed pair is sent to the display and
the cursor moves to the beginning of the next line.

Use LINE INPUT instead of INPUT when you need to
enter string information which contains delimiters (that
is, commas) that would otherwise confuse an INPUT
statement.

See also: INKEYS$, INPUT #, INPUT$, LINE INPUT, LINE
INPUT #

INPUT # statement

INPUT # loads variables with data from a sequential file.
INPUT #filenum, variable list

104

PLETTTITETLITTIeeneee

C portioiio PowerBasic

filenum is the number given when the file or device was
opened, and variable list is a comma-delimited sequence
of one or more string or numeric variables.

The data in the file must match the type(s) of the
variable(s) defined in the INPUT # statement. The file
data should appear just as if it were being typed from
the keyboard in response to an INPUT statement; that is,
it should be separated by commas with a carriage
return at the end.

See also: INPUT, INPUT$, LINE INPUT #

INPUTS function

INPUTS$ reads a specific number of characters from a file,
a device, or the keyboard.

s$ = INPUTS(n [, [#] filenum])

n is the number of characters to be read, and filenum is
the file to read from. If you omit filenuni, the keyboard
is read. If the keyboard is used, the typed characters are
not echoed on the screen.

INPUTS$ accepts all characters, including control char-
acters.

INPUT$ is primarily used for keyboard input, though it
can also read characters from sequential and random-
access files and the communications port. Binary-mode
files (accessed using GET$ and PUTS) offer more flex-
ibility when working with data on a character-by-

1056

C® portfolio PowerBasic

character basis. INKEY$ offers more flexibility when
reading from the keyboard.

Certain keys and key combinations (for example, the
function and cursor control keys) don’t return ASCII
values. When such keys are pressed, INPUT$ substitutes
CHRS$(0); INKEY$ doesn’t have this limitation.

See also: GET$, INKEYS$, INPUT, INSTAT, LINE INPUT, PUT$

INSTAT function

INSTAT returns the keyboard status.
y = INSTAT

INSTAT returns keyboard status information. If a key
has been pressed, INSTAT returns logical TRUE (non-
zero); otherwise, it returns logical FALSE (zero). Its
most common use is in loops that suspend program
execution until the user presses a key:

PRINT "Press any key to continue"

WHILE NOT INSTAT : WEND

K$ = INKEY$
INSTAT doesn’t remove a keystroke from the keyboard
buffer, so if it ever returns TRUE, it will continue to
return TRUE until the keystroke is removed by INKEY$
or another keyboard-reading function. That’s the reason
for the K$ = INKEY$ statement in the above code frag-
ment—while you don’t need to know the specific key
that was pressed, you must remove it from the key-

106

PLITTLITTTILLIITTILLee

B portiolio PowerBasic

board buffer so it won’t cause problems later in the
program.

See also: INKEY$

INSTR function

INSTR searches a string for the first occurrence of a
specified character or string.

y = INSTR([n,] main string, match string)

n is an integer expression ranging from 1 to the max-
imum string size (32750), and main string and match
string are string variables, expressions, or constants.

INSTR returns the position of match string in main string.
If match string is not in main string, INSTR returns 0. If
the optional n parameter is included, the search begins
at position n in main string. If match string is null (length
0), INSTR returns 1 (if 1 not specified) or n (if n is
specified).

INSTR is case-sensitive, meaning that upper- and lower-
case letters must match exactly in match and main string.

See also: LEFT$, MID$, RIGHT$

INT function

INT converts a numeric expression to an integer.

107

C& porfolio PowerBasic
y = INT(numeric expression)

INT returns the largest integer less than or equal to
numeric expression.

KILL statement

KILL deletes a disk file.

KILL filespec

filespec is a string expression specifying the file or files
to be deleted, and can include a path name and /or
wildcard characters. For example,

KILL "TEST.DOC"

FileName$ = "*.BAS"

KILL FileName$ potentially dangerous!
KILL "C:\DATA\INCOME.?87"

If filespec does not exist, error 53 (“File not found”) is
generated. If filespec is read-only, error 75 (“Path/File
access error”) occurs.

KILL is analogous to the DOS DEL (ERASE) command.
KILL cannot delete a directory. Use RMDIR instead, after
first deleting all the files in the directory.

108

PLLTLTETELETTTTTLLILLS

S portfolio PowerBasic

LCASES function

LCASES returns an all-lowercase version of its string
argument.

s$ = LCASES$(string expression)

LCASES$ returns a string equal to string expression, except
that all the uppercase letters in string expression are
converted to lowercase.

See also: UCASES

LEFTS function

LEFTS returns the leftmost n characters of a string.
5% = LEFT$(string expression, n)

1 is an integer expression and specifies the number of
characters in string expression to be returned. n must be
in the range 0 to 32750 (the maximum string size).

LEFT$ returns a string consisting of the leftmost n
characters of its string argument. If n is greater than or
equal to the length of string expression, all of string
expression is returned. If 1 is 0, LEFT$ returns the null
string.

See also: INSTR, MID$, RIGHT$

109

C® portiolio PowerBasic

LEN function

LEN returns the length of a string.

y = LEN(string expression)

LEN returns a value from 0 to the maximum string size
(32750), representing the number of characters in string
expression.

LET statement

LET assigns a value to a variable.
[LET] variable = expression

variable is a string or numeric variable, and expression is
of a suitable type (that is, string for string variables and
numeric for numeric variables).

LET is optional in assignment statements, and is in-
cluded to provide compatibility with BASIC source
files originally written for early versions of BASIC
interpreters. In practice, it is rarely, if ever, used.

LINE statement

LINE draws or erases a straight line on the graphics
screen.

LINE (x1,y1)-(x2,y2) [,color]

110

LILDLEDETETETTETETELE

2 portfolio PowerBasic

(x1,y1) and (x2,y2) specify the graphics screen
coordinates of the ends of the line. xI and x2 must be
numeric expressions which evaluate to a value between
0and 239. y1 and y2 must be numeric expressions
which evaluate to a value between 0 and 63. Any points
on the line which fall outside of the Portfolio’s 240 x 64
screen are not displayed; no run-time error is generated
in this case. color is an optional numeric expression
which evaluates to either 0 or 1. Using 1 for color causes
the line to be drawn, while 0 causes it to be erased.

See also: CIRCLE, POINT, PSET, SCREEN

LINE INPUT statement

LINE INPUT reads an entire line from the keyboard into a
string variable, ignoring delimiters.

LINE INPUT [;l[prompt string;] string variable

prompt string is an optional string constant. LINE INPUT
displays prompt string on the screen and waits for user
input. You can read up to 255 characters into each
string variable. Keystrokes are accepted until you press
RTN, at which time the resulting string is loaded into
string variable.

Use LINE INPUT instead of INPUT when you need to
enter string information which contains delimiters (that
is, commas) that would otherwise confuse an INPUT
statement. For example,

111

C® portiolio PowerBasic
INPUT "Enter patient address: ", a$
PRINT a$
fails if the address contains a comma:

Enter patient address: 101 Main Street, Apt2
101 Main Street

LINE INPUT accepts commas without a problem. If a
semicolon follows the INPUT keyword, then when ATN
is pressed to end the input sequence, a carriage return
won’t be sent to the display (that is, the cursor stays on
the same line).

See also: INPUT, INPUT$, LINE INPUT #

LINE INPUT # statement

LINE INPUT # reads a line from a sequential file or
communications port into a string variable, ignoring
delimiters.

LINE INPUT #filenum, string variable

filenum is the number of the file or device to read, and
string variable is the string variable to be loaded with
the data read from the file.

LINE INPUT # is like LINE INPUT except that it reads the
data from a sequential file or communications port
rather than from the keyboard. LINE INPUT # reads the

current record in the file and loads it into string variable.

112

LIDLLLELELLLLEETELLILE

C® Portioio PowerBasic

As with LINE INPUT, use LINE INPUT # to collect data that
has delimiter characters (commas) mixed in with data
items.

See also: INPUT #, LINE INPUT

LOC function

LOC returns the current position of a file pointer.
y = LOC(filenum)

filenum is the file number under which the file was
opened. The behavior of LOC depends on the mode in
which the file was opened.

If filenum is a random-access file, LOC returns the
number of the last record written or read.

If filenum is a sequential file, LOC returns the number of
128-byte blocks written or read since opening the file.
By convention, LOC returns 0 for files that have been
opened but have not yet been written or read.

If filenum is a binary file, LOC returns the file pointer
position.

For a communications file, LOC returns the number of
characters in the input buffer (waiting to be read).

See also: LOF, SEEK

113

P e

B portiolio PowerBasic

LOCATE statement

LOCATE positions the screen cursor and /or defines its
visibility.

LOCATE [row]l,[column]l,[cursor]]]

row is an integer expression specifying the screen row
on which to position the cursor (1 to 8). column specifies
the column (1 to 40). cursor is a numeric value that
controls whether the cursor will be visible (0 means
invisible; 1 means visible).

LOCATE is often used before a PRINT statement to
control where the output will appear on the screen.

See also: CSRLIN, LPOS, POS, PRINT

LOF function

LOF returns the length of a file.
y = LOF(filenum)

filenum is the number under which the file was opened.
LOF returns the size of the indicated file in bytes. For
communications files, LOF returns the amount of
available space left in the communications buffer. If
filenum does not refer to an open file or device, a run-
time error is generated.

See also: LOC, SEEK

114

+

LU

C® portiolio PowerBasic

LOG function

LOG returns the natural (base ¢) logarithm of its
argument.

Y = LOG(numeric expression)

A logarithm of a number is the power to which the base
would have to be raised to yield the number. Thus,

logarithm (base ¢) of n = x if eAx=n
and
erMog(n) =n

By definition, the logarithm (any base) of 1 is 0. LOG
returns the natural logarithm (base e, where e =
2.718282...) of its argument. If numeric expression is less
than or equal to zero, run-time error 5, “Illegal Function
Calll;]: results. LOG always returns a double-precision
result.

LPOS function

L‘Pos_ returns the number of characters on the current
line in the printer buffer.

y = LPOS(printer)

printer is 0 or 1, either of which selects printer 1.

LPOS reports how many characters have been sent to
the printer since the last carriage-return character was

115

& portiolio PowerBasic

output. In effect, it gives the current horizontal position
of the printhead.

See also: CSRLIN, LOCATE, LPRINT, POS, TAB

LPRINT and LPRINT USING
statements

LPRINT and LPRINT USING send data to the printer.

LPRINT [expression list [{,1;}]]
LPRINT USING format string; expression list [{,1;}]

expression list is a comma-, semicolon-, or space-
delimited series of numeric and /or string expressions.
format string contains formatting information.

LPRINT and LPRINT USING function identically to the
PRINT and PRINT USING statements except that the data
is sent to the printer rather than to the screen. See the
entries for PRINT and PRINT USING for further informa-
tion.

Portfolio PowerBASIC inserts a carriage-return/linefeed
(CR/LF) pair at the end of each line that it prints. The
line width (the number of characters output before each
CR/LF) is 80 by default.

If the printer is out of paper or off-line when LPRINT is
executed, your program will wait approximately 12
seconds for the condition to be corrected. If it is not
corrected within this time, the program will generate
an appropriate error. You can change the duration by

116

ATTTTTITLILTTTILeLee

& Portiolio PowerBasic
using POKE to alter the byte at memory segment 0,
offset 1144 (decimal) in the BIOS:
DEF SEG =0
POKE 1144, NewDuration%

The stored value is the approximate number of seconds
which the BIOS will wait for the condition to be
corrected before reporting an error.

See also: LPOS, PRINT, PRINT USING, TAB

LSET statement

LSET moves string data into a random-access file buffer.
LSET field variable = string expression

LSET and its sister function RSET both move string data
into “field variables” that have been defined in a pre-
vious FIELD statement as belonging to the buffer of a
random-access file.

If the length of string expression is less than the size of
field variable as specified in a FIELD statement, LSET left-
justifies string expression within the field by padding it
with spaces. This means that spaces are inserted after
the last character of string expression so that after the
LSET operation, LEN(field variable) still equals the width
defined in the associated FIELD statement.

If, on the other hand, the length of string expression is
greater than the size of field variable as specified in a

117

B portfolio PowerBasic

FIELD statement, then string expression is truncated to
the FIELD length.

RSET works similarly, but performs right justification.
See also: FIELD, GET, PUT, RSET

MIDS function

MID$ returns a portion of a string.
5§ = MIDS$(string expression, start [, length])

start and length are numeric variables or expressions,
and can range from 1 to the maximum string size
(32750) and 0 to the maximum string size, respectively.

MIDS as a function returns a substring of string
expression that is length characters long and starts at the
start character of string expression. For example,

MID$("Jean-Luc Picard",1,8)
returns Jean-Luc.

If length is omitted, or there are fewer than length
characters to the right of the start character of string
expression, all remaining characters of string expression,
including the start character, are returned. If start is
greater than the length of string expression, MID$ returns
a null string. Thus,

MIDS$("Jean-Luc Picard",6) returns Luc Picard
MID$("Jean-Luc Picard",6,20) returns Luc Picard

118

SULLLLLTELTEELLLLTLEE

C& portfolio PowerBasic
MID$("Jean-Luc Picard",20) returns the null string
See also: INSTR, LEFT$, MID$ statement, RIGHTS

MIDS statement

MID$ replaces characters in a string with characters
from another string.

MIDS$(string variable, start [, length]) = replacement string

start and length are numeric variables or expressions,
and can range from 1 to the maximum string size
(32750) and 0 to the maximum string size, respectively.

As a statement, MID$ replaces length characters of string
variable, beginning at character position start, with the
contents of replacement string. If length is included, it
determines how many characters of replacement string
are inserted into string variable. If length is omitted, all
of replacement string is used. The replacement will never
extend past the end of the original string variable; that
is, MID$ never alters the length of a string. MIDS is case-
sensitive.

See also: INSTR, MID$ function

119

& Portiolio PowerBasic

MKDIR statement

MKDIR creates a subdirectory (like the DOS MKDIR
command).

MKDIR path

path is a string expression naming the directory to be
created.

MKDIR (make directory) creates the subdirectory
specified by path. If you try to create a directory that
already exists, run-time error 5 occurs, “Illegal function
call.”

See also: CHDIR, RMDIR

MKIS, MKSS, and MKDS
functions

These functions convert numeric data into strings for
random-access file output.

DataTypeString$ = MKI$(integer expression)
DataTypeString$ = MKS$(single-precision expression)
DataTypeString$ = MKDS$(double-precision expression)

These functions are part of the process of saving
numeric values in random-access files. The statements
that place information in the buffer of a random-access
file (FIELD, LSET, and RSET) operate only on strings, so

120

RERRRRARRARARRRRRRAR

& portiolio PowerBasic

numeric data must be translated into string form before
it can be PUT into a random-access file.

Command Converts To From
MKI$ 2-byte string Integer
MKS$ 4-byte string Single-precision
MKD$ 8-byte string Double-precision

The complementary functions CVI, CVS, and CVD
convert the strings back to numeric form when reading
random-access files.

Don’t confuse MKI$ and related functions with STR$ and
VAL, which turn a numeric expression into printable
form and vice versa:

i=123.45

a$ = STR$(i) : b$ = MKSS$(i)

* a$ contains something worth putting onscreen
" b$ doesn’t

PRINT a$, b$

See also: CVI and associated functions, FIELD, GET, LSET,
PUT, RSET

NAME statement

NAME renames a file (like the DOS REN command).
NAME filespec1 AS filespec2

filespec1 and filespec2 are string expressions conforming
to DOS path and file-naming conventions. NAME gives

121

& portiolio PowerBasic

the file represented by filespec] the name filespec2. Since
filespec2 can contain a path name, it’s possible to move
the data from one directory to another. You can’t move
from one disk to another.

If filespec] does not exist, run-time error 53 (“File not
found”) occurs. If filespec2 already exists, run-time error
75 (“Path/File access error”) occurs.

OCTS function

OCTS returns a string that is the octal (base 8) represen-
tation of its argument.

5§ = OCTS$(numeric expression)

numeric expression must be in the range 32768 to
+65535; if outside this range, an Error 6, “Overflow,” is
generated. Any fractional part of numeric expression is
rounded before the string is created.

Octal is a number system that uses base 8 rather than
the base 10 (used by the everyday decimal system).
OCT$ returns the two's complement form of a negative
argument. See the BIN$ function entry and page 52 for
information about two’s complement arithmetic.

See also: BINS, HEXS

122

LT CCEEEEE TS

C& portiolio PowerBasic

ON ERROR statement

ON ERROR specifies an error-handling routine and
enables or disables error trapping.

ON ERROR GOTO {label | line number}

label or line number identifies the first line of the error-
trapping routine. Once error handling has been turned
on with this statement, instead of displaying an error
message and terminating execution, all run-time errors
result in a jump to your error-handling code. Use the
RESUME statement to continue execution, or END to
terminate the program.

To disable error trapping, use ON ERROR GOTO 0. You
can use this technique if an error occurs for which you
have not defined a recovery path; you can also choose
to display the contents of ERL and ERR at this time.

See also: END, ERL, ERR, ERROR, RESUME

ON/GOSUB statement

ON/GOSUB calls one of several subroutines according to
the value of a numeric expression.

ON n GOSUB (label | line number} [, {label | line number}]...

n is an integer expression with a maximum value of
255, and each label or line number identifies a statement
to branch to. When this statement is encountered, the

123

C& portiolio PowerBasic

nth label in the list is branched to; for example, if n
equals 4, the fourth label in the list receives control. If n
is less than one or greater than the number of labels, no
branch occurs, and Portfolio PowerBASIC continues
execution with the statement immediately following
the ON/GOSUB statement. If n is a floating-point value,
itis rounded to an integer before a corresponding
branch is selected.

Each subroutine should end with RETURN, which causes
execution to resume with the statement immediately
following the ON/GOSUB statement.

The IF block statement also performs multiple
branching and may be more flexible than ON/GOSUB,
depending on your application.

See also: GOSUB, IF block, ON/GOTO

ON/GOTO statement

ON/GOTO sends program flow to one of several
possible destinations based on the value of a numeric
expression.

ON #n GOTO {label | line number} [, {label | line number}]...

n is an integer expression with a maximum value of
255, and label or line number identifies a statement in the
program to branch to. The nth label is branched to; for
example, if n equals 4, the fourth label in the list
receives control. If 7 is less than one or greater than the

124

SULLDLIEELLTITLLLLILLT

CB portiolio PowerBasic

number of labels in the list, Portfolio PowerBASIC
continues execution with the statement that
immediately follows the ON/GOTO. If n is a floating-
point value, it is rounded to an integer before a
corresponding branch is selected.

ON/GOTO behaves exactly like ON/GOSUB except that it
performs a GOTO rather than a GOSUB. This means that
the program retains no memory of where the branch
originated.

The IF block statement also performs multiple
branching and may be more flexible than ON/GOTO,
depending on your application. See the GOTO entry for
a discussion of ways to avoid using GOTOs in your
programs.

See also: GOTO, IF block, ON/GOSUB

OPEN statement

OPEN prepares a file for reading or writing.

OPEN filespec [FOR mode] AS [#]filenum[LEN = record
size]

OPEN modestring, [#]filenum, filespec [,record size]

Each mode specifies a particular kind of file (sequential,
random-access, or binary) for reading, writing (or
both), or appending.

125

C& portiolio PowerBasic

mode File type Action

OUTPUT Sequential ~ Write to

INPUT Sequential Read from
APPEND Sequential ~ Append to
RANDOM Random Reading or writing
BINARY Binary Reading or writing

modestring is a string expression whose first (and
usually only) character is one of the following:

modestring Specific mode

g0 Sequential output

“1” Sequential input

“A" Sequential append
R Random input/output
“B” Binary input/output

filenum can be any integer value. filespec is a string
expression specifying the name of the file to be opened
and, optionally, a drive and /or path specification. To
open a serial communications port as a file, use the
special filename “COM1:” (see OPEN COM below). record
size is an integer expression ranging from 1 to 32767,
specifying the length in bytes of each record in a
random-access file. The default record size is 128 bytes.

The main function of OPEN is to associate a number
(filenum) with a file and to prepare that file for reading
and /or writing. This number is then used, rather than

126

SULLLTILELTLLETTTTL0T

C® portfolio PowerBasic

its name, in every statement that refers to the file. The
OPEN statement contains information on the mode of
the file; that is, the methods by which the file will be
accessed: sequential (for input/output to a new file, or
output to an existing file), random-access, and binary.
An OPEN statement is usually balanced by a matching
CLOSE.

The two forms of the command differ only in the level
of verbosity:

OPEN "myfile.dta" FOR OUTPUT AS #1
has the same effect as
OPEN "O"#1,"myfile.dta"

Attempting to OPEN a file for INPUT that doesn’t exist
causes run-time error 53, “File not found.” If you try to
open a nonexistent file for OUTPUT, APPEND, RANDOM,
or BINARY operations, a new file is automatically cre-
ated.

See also: CLOSE, OPEN COM

OPEN COM statement

OPEN COM opens and configures a serial communi-
cations port.

OPEN "COM1: [baud] [parityl [,datal [,stop] [options]"
AS [#]filenum

127

C& portfolio PowerBasic

baud is an integer constant specifying the communica-
tions rate. Valid rates are 75, 110, 150, 300, 600, 1200,
1800, 2400, 4800, 9600, 19200, 38400, and 57600 (the
default is 300).

parity is a single character specifying parity status:

parity Specific mode
S Space parity (parity bit always 0)
(0] Odd parity
M Mark parity (parity bit always 1)
E Even parity
N No parity (ignored on received characters

and omitted on transmitted characters)

The default is even parity (E).

data is an integer constant from 5 to 8 specifying the
number of data bits. The default is 7.

stop is an integer constant from 1 to 2 specifying the
number of stop bits. The default is 1 stop bit (for baud
rates 75 and 110, it is 2).

filenum is an integer expression specifying the file
number through which you access the communications

port.

The OPEN COM statement includes an option block that
controls status-line handling, parity, and carriage-
return/linefeed processing:

options = [,RS] [,CS[msec]] [[DS[msec]] [CDI[msec]]
[,LF] [PE]

128

PILTOLICETLETTTTTtice

& poriolio PowerBasic

RS suppresses the request to send (RTS) line. Cs[msec]
controls clear to send (CTS). DS[msec] controls data set
ready (DSR). CD[msec] controls carrier detect (CD). LF
causes a linefeed character to be appended to every
carriage-return character. PE turns on parity checking.

The msec argument of the CS, DS, and CD options can
range from 0 to 65535 and specifies how many milli-
seconds Portfolio PowerBASIC waits for the required line
status before returning a Device Timeout error. If it is 0
or omitted, then no line-status checking is performed.
The default for msec is 1000 for €S and DS, and 0 for CD.

Note that when a communications file is open, the
Portfolio is not allowed to power down, as it may
disrupt the serial port’s programming. This means that
both the Portfolio and the serial interface will consume
battery power as long as the communications file is
open. Therefore to consume precious battery life, it is
best not to keep the communications file open during
long periods of inactivity.

The PRINT #, INPUT #, and LINE INPUT # statements, as
well as the INPUTS function, are used to transmit and
receive data through the communications file. The EOF,
LOC, and LOF functions return the status of the
communications buffer, while the $COM metastatement
determines the size of the buffer. This simple example
echoes all data received by the communications port
until a key is pressed:

129

CB portfolio PowerBasic

" set up a 1K input buffer
$COM 1024
“300 baud, no parity, 8 data bits, no status checks
OPEN "COM1:300,n,8,1,DS,RS,CS,CD" AS #1
PRINT "Press any key to terminate the program..."
* while a key hasn’t been pressed
WHILE NOT INSTAT
’ if there is any input available
IF LOC(1) > 0 THEN
* read any info available in the COM port buffer
ComPortInput$ = INPUT$(LOC(1), #1)
‘ display input
PRINT "COM Port input: "; ComPortInput$
END IF
WEND
CLOSE 1
END

See also: $COM, EOF, INPUTS, INPUT #, LINE INPUT #, LOC,
LOF, OPEN, PRINT #

OUT statement

OUT writes a byte to a processor I/O port.
OUT portno, byte

OUT sends byte to hardware output port portno, where
portno is in the range -32768 to +65535 and byfe is an
integer expression from 0 to 255. OUT is used for
controlling various hardware subsystems, such as com-
munications ports, printer ports, and other external

130

UL UL

S porttolio PowerBasic

devices. OUT can send a byte to a port even if no device
is attached to that port.

Used improperly, OUT can easily crash your system by
writing data to ports that are used internally in the
Atari Portfolio.

See also: INP

PEEK function

Returns the byte at a specified memory location.
y% = PEEK(address)

The PEEK function and complementary POKE statement
are low-level methods of accessing individual bytes in
memory, something that cannot be done with Portfolio
PowerBASIC's defined variables. The data is retrieved
from memory starting at offset address within the
current segment. Be sure to set the current segment
with DEF SEG if you want to retrieve the data from
somewhere besides the default data segment.

PEEK retrieves a single byte (8 bits) and returns it as an
integer with a value from 0 to 255. address is a numeric
expression from -32768 to +65535, indicating the offset
in the current segment where the data retrieval should
begin. See page 52 for more about positive and negative
representations of the offset value.

See also: DEF SEG, POKE

131 |

G2 portiolio PowerBasic

POINT function

POINT returns information about a pixel on the graphics
screen.,

% = POINT(x,y)

(x,y) specifies the coordinates of a pixel on the graphics
screen. x must be a numeric expression which evaluates
to a value between 0 and 239. y must be a numeric
expression which evaluates to a value between 0 and
63. POINT returns a value of 1 if the pixel is turned on
(with a previous CIRCLE, LINE, or PSET), or a value of 0 if
the pixel is turned off.

See also: CIRCLE, LINE, PSET, SCREEN

POKE statement

Stores a byte to a specified memory location.
POKE address, byte value

The POKE statement and complementary PEEK function
are low-level methods of accessing individual bytes in
memory, something that cannot be done with Portfolio
PowerBASIC's defined variables. The data is stored to
memory starting at offset address within the current
segment. Be sure to set the current segment with DEF
SEG if you want to store the data to somewhere besides
the default data segment.

132

\

RININRRRRRRRRERELLE:

C® portiolio PowerBasic

POKE stores a single byte (8 bits) whose value is from 0
to 255. address is a numeric expression from —32768 to
+65535, indicating the offset in the current segment
where the data storage should begin. See page 52 for
more about positive and negative representations of the
offset value.

See also: DEF SEG, PEEK

POS function

POS returns the horizontal position (column number) of
the screen cursor.

¥ =POS(k)

x is a dummy numeric argument. The value returned
by POS ranges from 1 to 40; it represents the horizontal
position (column number) of the cursor.

Use CSRLIN to get the cursor’s vertical position (row
number). Use LOCATE to move and hide the cursor.

See also: CSRLIN, LOCATE, LPOS, TAB

PRINT statement

PRINT displays information on the screen.

PRINT [expression [(,| 1;} [expression]]...]

133

C& Portiolio PowsrBasic
expression is a series of numeric and /or string
expressions separated by semicolons, blanks, or
commas. If expression doesn’t end with a semicolon,
Portfolio PowerBASIC outputs a carriage return after the
information in expression list. If you omit expression,
PRINT outputs only the carriage return.

The punctuation separating each expression determines
the spacing between the individual items. For quick
and tidy output, Portfolio PowerBASIC divides the
screen into print zones of 14 columns each. Using a
comma between each expression causes each to be
printed at the beginning of the next zone. For example,

PRINT "Peter”, "Paul”, "Mary"
results in

Peter Paul Mary
A semicolon or space between elements causes each

item to be printed immediately after the last, without
regard for print zones. For example,

PRINT "Peter";"Paul";"Mary"
results in

PeterPaulMary

134

LU EEEEE ST

2 partiolio PowerBasic

Normally, the last thing a PRINT statement sends to the
screen is a carriage return, which moves the cursor to
the beginning of the next line (where subsequent
output appears). However, if PRINT is terminated by a
comma, semicolon, or the TAB function, the carriage
return is not sent and the cursor remains on the same
line, one space to the right of the output. Thus,

PRINT "Peter, Paul ";
PRINT "and Mary"

outputs
Peter, Paul, and Mary
while
PRINT "Peter, Paul "
PRINT "and Mary"

outputs

Peter, Paul
and Mary

Numeric values are always PRINTed followed by a
single space. Positive numbers are preceded by a space,
negative numbers by a minus sign.

By default, PRINT displays numeric values with up to 6
or 7 significant digits. Therefore, all digits of integers
and single-precision floating point numbers are
printed, while double-precision floating point numbers
are rounded off. This is done to conserve screen space,
given the 40-column x 8-line nature of the Portfolio’s
display. If you wish to display all digits of a floating

135

B portiolio PowerBasic

point number with more than 7 significant digits, use
the STR$ function with PRINT:

PRINT SIN(2) ‘prints .9092974
PRINT STR$(SIN(2),12) ’prints .909297426826
PRINT STR$(SIN(2),16) “prints .9092974268256816

PRINT can be abbreviated as a question mark (a typing
aid of dubious merit dating from interpretive days of
yore):

? "Hello"
is the same as
PRINT "Hello"

See also: LPRINT, LPRINT USING, PRINT #, PRINT USING,
STR$, TAB

PRINT USING statement

PRINT USING sends formatted information to the screen.

PRINT USING format string; expression [{,| 1;}
[expression]]...

format string is a string constant or variable that
describes how to format the information in expression.
expression is the string or numeric information to be
printed. Each expression is separated by commas,
spaces, or semicolons (PRINT USING ignores the
punctuation in expression).

136

PLLLELLLTLTETTTTTTTLT

C& portiolio PowerBasic
Formatting String Output

To print the first n characters of a string, use a format
string consisting of two backslashes (\\) enclosing n-2
spaces. For example, if the format string is “\\“ (no
spaces, length equal to 2), then two characters are prin-
ted; for “\ \“ (two spaces, length equal to 4), four
characters are printed:

a$ = "dogs and cats"
PRINT USING "\\"; a$
PRINT USING "\ \"; a$

do
dogs

To print only the first character of a string, use a format
string of “1":

a$ ="dogs and cats"
PRINT USING "I"; a$

This code’s output:
d

To print all of a string, use an ampersand (&) as the
format string:

a$ ="dogs and cats"
PRINT USING "&"; a$

This code’s output:
dogs and cats

137

C& portiolio PowerBasic
Formatting Numeric Output

With numeric output, the format string controls the
total width of the output field, the number of digits
output, and the placement of the decimal point. You
can also specify placement of special characters, such as
dollar signs, commas, and plus or minus signs.

Unsigned Format

Pound signs (#) in the format string, up to a maximum
of 16, represent the digits of a number, with the decimal
point placed as specified. Extra spaces to the right of
the decimal point are filled with zeros, while extra spa-
ces to the left are padded with spaces. The one ex-
ception to this rule is for 1 > n > -1, in which case 0 is
placed before the decimal point. Numbers are rounded
off, if necessary, to fit in the allotted space. Negative
numbers are displayed with a leading minus sign,
which occupies one of the spaces specified by a “#” in
the format string.

Format
Value string Output
0.468 . 0.47 (1 leading space)
0.468 . 0.4680 (no leading spaces)
12.5 A 12.50 (no leading spaces)
12.5 HHHEH# 12.5 (2 leading spaces)
Signed Format

A plus sign at the beginning of the format string causes
the number’s sign (+ or -) to be printed before the

138

VULLLLLLURLLLLLLLLLLY

B portfolio PowerBasic

number. A minus sign at the beginning of the format
string does not have this effect; it is treated as a literal
character and will always be displayed, regardless of
the sign of the number. If you place a plus sign at the
end of the format string, the number’s sign is printed
immediately following the number. A minus sign at the
end of the format string causes a trailing space to be
printed if the number is positive, or a trailing minus
sign if the number is negative.

Format
Value string OQutput
24 i +24.00 (no leading spaces)
24 - 24.00+ (no leading spaces)
99 #H #H4- 99.00 (1 trailing space)
-99 #i - 99.00- (no trailing spaces)

A dollar sign at the beginning of the format string
causes a literal dollar sign to be printed before the
number, with a minus sign inserted between the dollar
sign and first digit for negative numbers. A double
dollar sign reserves two extra digit positions and
causes a single dollar sign (which counts as one of the
digits) to be printed to the immediate left of the num-
ber; the minus sign would be printed to the left of the
dollar sign if the number were negative. A double
asterisk results in leading blanks in the field being filled
with asterisks. Note that the double asterisk and dollar
sign can be combined. A comma to the left of the
decimal point in the format string causes commas to be

139

CB portfolio PowerBasic

printed as thousands separators (for example, 1,000,000
as opposed to 1000000).

Format
Value string Output
5.69 S $ 5.69 (no leading spaces)
5.69 S $5.69 (2 leading spaces)

25.69 “YiHHHLH
25.69 "tpHHHHE

15000 i, ##

*+**25.69 (no leading spaces)
##4$25.69 (no leading spaces)

15,000.00 (no leading spaces)

Scientific Notation

Numbers can be output in scientific notation by in-
cluding three to six carets (*) in the formatting string.
Each caret corresponds to a place in the exponent: one
for the E, one for the sign, and one to four for the expo-
nent’s digits:

PRINT USING "#.H#AAN 4567 ‘prints .457E+04
PRINT USING "#.##AAAAAN 1000000 “prints .10E+007

Literal Format Characters

To output a formatting character as itself, precede it
with an underscore:

PRINT USING"_##";1 ’prints #1
PRINT USING "#_#";1 ‘prints 1#

If the number cannot fit in the space designated by the
format string, Portfolio PowerBASIC ignores the format

140

SLLEDELELTETELTTILLE

C Porfolio PowerBasic
string and prints the entire number with a leading
percent sign (%):

PRINT USING "##.4##"; 125000 ‘prints %125000.00

Variables can be used as format strings. Thus,

FS$ = "iHH "
PRINT USING FS$; amount

is equivalent to
PRINT USING "###.###"; amount
See also: LPRINT, LPRINT USING, PRINT, PRINT #, STR$, TAB

PRINT # and PRINT # USING
statements

PRINT # and PRINT # USING write formatted information
to a file or device.

PRINT #filenum, [[USING format string;] expression
;| 1;} [expression]]...]

filenum is the value under which the file or device was
opened. format string is an optional sequence of format-
ting characters (described in the PRINT USING entry
above). expression is a numeric or string expression to
be output to the file.

141

C2 Porttolio PowerBasic

PRINT # sends data to a file exactly like PRINT sends it to
the screen. If you are not careful, you can waste a lot of
disk space with unnecessary spaces, or worse, put
fields so close together that you can't tell them apart
when they are later input with INPUT #. For example,

PRINT #1,1,2,3
sends
1 z 3

to file #1. Because of the 14-column print zones between
characters, superfluous spaces are sent to the file. On
the other hand,

PRINT #1,1;2;3
sends
123

to the file, and you can’t read the separate numeric
values from this record because INPUT # requires
commas as delimiters. The surest way to delimit fields
is to put a comma between each field, like so:

PRINT #1,1""2""3
which writes
1,2,3

to the file, a packet that wastes the least possible space
and is easy to read with an INPUT # statement.

142

CLLLLLLLLLLLLELELLLY

B portiolio PowerBasic

PRINT # is advantageous when writing a single number
or string on each line in a file. Use PRINT # followed by a
comma but no arguments to write a blank line (carriage
return/linefeed) to a file:

PRINT #1, ‘writes a blank line to file #1

See also: INPUT #, LINE INPUT #, PRINT

PSET statement

PSET plots or erases a pixel on the graphics screen.
PSET (x,y) [,color]

(x,) specifies the coordinates of the pixel on the
graphics screen to set or reset. x must be a numeric
expression which evaluates to a value between 0 and
239. y must be a numeric expression which evaluates to
a value between 0 and 63. color must be a numeric
expression which evaluates to either 0 or 1. Using 1 for
color causes the pixel to be set, while 0 causes it to be
reset (erased).

See also: CIRCLE, LINE, POINT, SCREEN

PUT statement

PUT writes a record to a random-access file.
PUT [#Ifilenum [, recnum]

143

C® portfolio PowerBasic

filenum is the file number specified when the file was
opened. recnum is a numeric expression specifying the
record to be written. PUT is complementary to GET; it
writes one record to a random-access file. recnum is
optional. If it is omitted, Portfolio PowerBASIC uses the
value used in the last PUT or GET statement plus 1.

It is possible to PUT to records out of contiguous order,
asin

PUT#1,1
PUT #1, 100

which creates a random-access file 100 records long.
The data in records 2 through 99, however, are
undefined until you explicitly PUT something there.

See also: EOF, FIELD, GET, LOC, LOF, LSET, RSET

PUTS statement

PUT$ writes a string to a binary mode file.
PUTS [#lfilenum, string expression

PUT$ writes the contents of string expression to file file-
num at the file’s current pointer position. File filenum
must have been opened in binary mode.

If the file pointer position is at the end of the file, PUTS
appends string expression to the file, increasing its
length by LEN(string expression) bytes. If the file pointer
is before the end of the file, PUT$ overwrites existing

144

SLLDLULULLLLEEEEELEEE

C® Portioio PowerBasic

data with string expression. Use LOC, LOF, and SEEK to
manipulate the file pointer. In either case, the file
pointer position following a PUTS is at the end of the
just-written string.

See also: EOF, GETS, LOC, LOF, OPEN, SEEK

RANDOMIZE statement

RANDOMIZE seeds the random number generator.
RANDOMIZE numeric expression

Values returned by the random number generator
(RND) depend on the initial seed value. For a given seed
value, RND always returns the same sequence of values.
Thus, any program that depends on RND will run
exactly the same way each time unless a different seed
is given.

See also: RND

READ statement

READ loads DATA statement constants into program
variables.

READ variable [, variablel...

variable is a numeric or string variable. READ loads the
indicated variable(s) with values found in DATA state-

145

C® Portiolio PowerBasic

ments. At run time, READ accesses DATA statements in
the order in which they appear in the source program
and individual constants from left to right within each
DATA statement.

The most common error associated with reading DATA
statements is improper synchrony between READ
statements and DATA constants that causes the program
to try to load string data into a numeric variable; this
generates a syntax error (run-time error 2). Loading
numeric constants into string variables does not cause
an error.

The RESTORE statement lets you reset the READ pointer
so that constants can be reread from the first statement
or any specified DATA statement. If you try to READ
more times than your program has constants in DATA
statements, you'll get run-time error 4, “Out of data.”
No error is generated, however, if some DATA constants
go unread.

See also: DATA, RESTORE

REG function and
statement

REG sets or returns a value in the register buffer.
Function: y = REG(register)

Statement: REG register, value

146

C& Portiolio PowerBasic

register indicates a processor register:

[LLLLLLLELLLTLLLLLLLL

Number Register

Flags
AX
BX
CX
DX
SI

DI
BP
DS
ES

WONNOUE W =O

If register is not in the range 0 through 9, run-time error
5is generated, “Illegal function call.” value is a numeric
variable or expression in the range -32768 to +65535.
See page 52 for more about positive and negative
representations of the 16-bit value.

REG as a function returns the value of the selected
element in the register buffer. REG as a statement causes
the selected element in the register buffer to be loaded
with the indicated integer value; register 0, the Flags
register, may not be loaded, however. The register
buffer is Portfolio PowerBASIC’s interface with the
hardware registers in your computer’s central
Pprocessing unit.

Use REG to pass information to and from assembly
language interrupt routines. The register buffer is
loaded into the processor’s registers just before a CALL

147

B portfolio PowerBasic

INTERRUPT is performed; the contents of the processor’s
registers are put in the buffer upon returning from the
interrupt. At any time, the buffer contains the state of
the processor’s registers as they existed at the com-
pletion of the most recent CALL INTERRUPT routine.

Restrictions: CALL INTERRUPT is the only operation
which transfers data between the register buffer and
the actual processor registers. REG does not reflect the
state of the actual processor registers at any other time.

See also: CALL INTERRUPT

REM statement

REM indicates that the rest of a line in a source code file
is to be interpreted as a remark or comment. It won't be
processed by the compiler.

REM comment

comment is any sequence of characters. A comment can
appear on a line with other statements, but it must be
the last thing on that line, and it must be preceded by a
colon. For example, the assignment below won’t be
compiled or executed:

REM now add the numbers:a=b + ¢

because the compiler can’t tell where the comment
ends and the statement begins. This works:

a=b + c: REM now add the numbers

148

SULTLUELELLLLLTTELELE

CB portfolio PowerBasic

The single quotation mark (‘) is an alternate form of
REM. When you use a single quote, you don’t need a
colon to separate the remark from the other statements
on the same line. Don’t use a single quote to delimit
comments after a DATA statement; use :REM or
instead (see the example).

RESTORE statement

RESTORE resets the READ pointer.
RESTORE [label | line number]

RESTORE label or line number causes the next READ
statement to access the DATA statement identified by
label. If label is omitted, the next READ statement
accesses the program’s first DATA statement. RESTORE
enables your program to read DATA constants more
than once.

See also: DATA, READ

RESUME statement

RESUME restarts program execution after error handling
with ON ERROR GOTO.

RESUME {label | line number}

149

2 Portiolio PowerBasic

The RESUME statement is used to continue execution of
a program after a run-time error has been trapped and
processed with an ON ERROR handler. The handler must
terminate with either RESUME or END, or else a “Missing
Resume” error occurs.

RESUME causes execution to resume at the statement
identified by label or line number.

If a RESUME statement is encountered when the pro-
gram isn’t in an error-trapping routine, run-time error
20 results (“Resume without error”).

See also: ERL, ERR

RETURN statement

RETURNS from a subroutine to its caller.
RETURN

RETURN terminates the execution of a subroutine and
passes control to the statement directly following the
calling GOSUB. Performing a RETURN without a cor-
responding GOSUB causes unexpected and difficult-to-
track errors.

See also: $STACK, CALL, GOSUB, SUB

150

LULLLLLLELLLELTLLLLLT

& portiolio PowerBasic

RIGHTS function

RIGHTS returns the rightmost n characters of a string.

58 = RIGHTS(string expression, n)

n is an integer expression specifying the number of
characters in string expression to be returned; it must be
in the range 0 to the maximum string size (32750).

RIGHTS returns the indicated number of characters from
its string argument, starting from the right and
working left. If n is greater than the length of string
expression, all of string expression is returned. If n is 0,
RIGHTS$ returns the null string.

See also: INSTR, LEFT$, MID$

RMDIR statement

RMDIR deletes a disk directory (like the DOS RMDIR
command).

RMDIR path

path is a standard path description string. RMDIR deletes
the directory indicated by path. This statement is the
equivalent of the DOS RMDIR command. The same re-
strictions apply, namely that path must specify a valid,
empty directory. If the directory isn’t empty, then run-
time error 75 occurs, “Path/File access error.”

See also: CHDIR, MKDIR

151

C® portfolio PowerBasic

RND function

RND returns a random number.
y=RND

RND returns a random double-precision value between
Oand 1.

Numbers generated by RND aren’t really random, but
are the result of applying a pseudorandom transforma-
tion algorithm to a starting, or seed, value. Given the
same seed, Portfolio PowerBASIC's RND algorithm

always produces the same chain of “random” numbers.

To produce random integers between 1 and n,
inclusive, use this technique:

RandomNo% = INT(RND * n) + 1
Better yet, create it as a single-line DEF FN function:
DEF FNRndInt%(x%) = INT(RND * x%) + 1

See the discussion under RANDOMIZE for information
on seeding the random number generator.

See also: RANDOMIZE

RSET statement

RSET moves string data into a random-access file buffer.

RSET field variable = string expression

152

PLLLLTLOLELELETELETLT

C2 portiolio PowerBasic

RSET and its sister function LSET both move string data
into “field variables” which have been defined in a pre-
vious FIELD statement as belonging to the buffer of a
random-access file.

If the length of string expression is less than the size of
field variable as specified in a FIELD statement, RSET
right-justifies string expression within the field by
padding it with spaces. This means that spaces are in-
serted before the first character of string expression so
that after the RSET operation, LEN(field variable) still
equals the width defined in the associated FIELD
statement.

If, on the other hand, the length of string expression is
greater than the size of field variable as specified in a
FIELD statement, then string expression is truncated to
the FIELD length.

LSET works similarly, but performs left-justification.
See also: FIELD, GET, LSET, PUT

SCREEN function

SCREEN returns the ASCII code of the character at the
specified screen row and column.

y = SCREEN(row, column)

row and column are integer expressions that specify the
screen row and column that SCREEN returns informa-
tion about; row and column can range from 1 to 8 and 1

163

C& portiolio PowsrBasic

to 40, respectively. SCREEN may only be used in text
mode.

SCREEN statement

SCREEN sets the screen display mode.
SCREEN mode

mode specifies either text (default) or graphics screen
mode; it must be a numeric expression which evaluates
to a value of either 0 (text mode) or 1 (graphics mode).
When a program begins executing, and when it
terminates, the display is automatically set to text
mode, Whenever the screen switches from text to
graphics mode or vice versa, the screen is also cleared.
You can display text while in graphics mode by using
the PRINT statement just as you would in text mode.

SEEK statement

SEEK sets the file pointer position in a binary file.
SEEK [#] filenum, position

SEEK sets the file pointer position of file filenum to
position. This means that the next GET$ or PUTS$ per-
formed on the file will occur position bytes deep into the
file. File filenum must have been opened in binary
mode.

{

LUDTELDL DD OEEES

C portiolio PowerBasic

Use LOC to determine a binary file’s current pointer
position, and LOF to determine its length. SEEKing past
the end of a file does not produce an error, but no data
can be read from there.

See also: EOF, GETS$, LOC, LOF, OPEN, PUT$

SGN function

SGN returns the sign of a numeric expression.

¥ = SGN(numeric expression)

If numeric expression is positive, SGN returns +1. If
numeric expression is zero, SGN returns 0. If numeric
expression is negative, SGN returns —1.

In conjunction with the ON/GOTO and ON/GOSUB state-

ments, SGN can produce a FORTRAN-like three-way
branch:

ON SGN(balance) + 2 GOTO InTheRed, Even,_
InTheMoney

See also: IF, ON/GOSUB, ON/GOTO

SIN function

SIN returns the trigonometric sine of its argument.

y = SIN(numeric expression)

1656

C® portiolio PowerBasic

numeric expression is an angle specified in radians. To
convert radians to degrees, multiply by 57.2958. To
convert degrees to radians, multiply by 0.017453. For
more information on radians, see the ATN function
entry.

SIN returns a double-precision value between -1 and
+1.

See also: ATN, COS, TAN

SQR function

SQR returns the square root of its argument.
y = SOR(numeric expression)

numeric expression must be greater than or equal to zero.

SQR calculates square roots using a faster algorithm
than the power-of-0.5 method; that is, y = SQR(x) takes
less time to execute than y = x/.5).

Attempting to take the square root of a negative
number results in run-time error 5, “Illegal function
call.” SQR returns a double-precision result.

See also: EXP, LOG

LLLLDELELTETTLITILLee

C2 partolio PowerBasic

STRS function

STR$ returns the string representation of a number.

58 = STRS(numeric expression [, digits])

STR$ returns the string form of a numeric variable or
expression; that is, it returns a string comprised of the
ASCII characters that you would see on the screen were
you to PRINT numeric expression. digits is an optional in-
teger expression specifying the number of digits to
appear in the result. If numeric expression is greater than
zero, STRs adds a leading space. For example, STR$(14)
returns a three-character string, of which the first char-
acter is a space, and the second and third are the ASCII
characters “1” and “4”.

digits permits control over the format of the result.
numeric expression is rounded, if necessary, to fit in
digits places. If numeric expression cannot be rounded to
fitin digits places, an error occurs. Allowable values for
digits are 1 through 16.

The complementary function is VAL, which takes a
string argument and returns the numeric equivalent.
Thus, number = VAL(STR$(number)).

See also: PRINT, PRINT USING, VAL

167

C® portiolio PowerBasic

STRINGS function

STRINGS returns a string consisting of multiple copies of
the specified character.

5§ = STRINGS$(Count, {code | string expression))

Count and code are integer expressions. Count can range
from 1 to the maximum string size (32750); code, from 0

to 255.

STRINGS with a numeric argument returns a string of
Count copies of the character with ASCII code code.

STRING$ with a string argument returns a string of
Count copies of string expression’s first character. For
example,

STRING$(8,32)
STRINGS(8," ")
SPACES(8)

REPEATS(8," ")

all do the same thing—produce a string of eight spaces.

STRPTR function

STRPTR returns the offset portion of the address of a
string variable.

x! = STRPTR(string variable)

168

VILTEEES

AUTTTERLTLELT

2 portivlio PowerBasic

string variable is the name of a string variable. STRPTR
returns the offset portion of the address in memory
where the contents of string variable are stored. Such
address information is sometimes called a pointer; for
example, STRPTR(a$) is said to return a pointer to a$.

A segment value is also required to fully define an
address. The function STRSEG returns the segment
portion of the address of a string variable.

Note that STRPTR differs from VARPTR (and STRSEG from
VARSEG). When used with a string variable, VARPTR
returns the offset of the string’s handle, while STRPTR
returns the offset of the actual string data.

STRPIR returns a floating point value in the range
0..65535. See page 52 for an example showing how to
convert this value to a signed integer in the range
-32768..+32767.

See also: STRSEG, VARPTR, VARSEG

STRSEG function

STRSEG returns the segment portion of the address of a
string variable.

x! = STRSEG(string variable)

string variable is the name of a string variable. STRSEG
returns the segment portion of the address in memory
where the contents of string variable are stored. An

159

C® porttolio PowerBasic

offset value is also required to fully defme. an address;
the STRPTR function returns the offset portion of the
string’s address.

Note that STRSEG differs from VARSEG (and STRPTR from
VARPTR). When used with a string variable, V‘ARSEG
returns the segment of the string’s hxfmﬂe, while STRSEG
returns the segment of the actual string dafa.

STRSEG returns a floating point value in the range
0..65535. See page 52 for an example showing how to
convert this value to a signed integer in the range
-32768..+32767.

See also: STRPTR, VARPTR, VARSEG

SUB/END SUB statements

SUB/END SUB defines a Portfolio PowerBASIC procedure.

SUB procname [(parameter list)] SHARED
: {statements}

'[F.XIT SUB]

: {statements}

’END SUB

160

g

LULLLLLULLLELLTLLLE

ce Portiolio PowerBasic

procname is the name of the procedure. It must be unique:

no other variable, function, procedure, subroutine, or
label can share it.

parameter list is an optional, comma-delimited sequence
of formal parameters. The parameters used in the
argument list serve only to define the procedure; they
have no relationship to other variables in the program
with the same name. Note that all parameters must be
scalar (non-array) variables; you cannot Ppass constants,
expressions, individual array elements, or whole arrays
to a procedure directly.

SUB and END SUB define a subroutine-like block of
statements called a procedure (or subprogram), which
is invoked with the CALL statement and can be passed
parameters by reference.

The default variable type within the SUB body is
SHARED, denoted by the presence of the SHARED key-
word in the procedure declaration. Shared variables are
global to your entire program; if a SUB modifies a
variable called MyVar, later references to MyVar in
another SUB or in the main body of your program will
access the new value of MyVar. For example:

Myval' =1
CALL Bumplt
CALL Bumplt
PRINT MyVar
END

SUB Bumplt SHARED
MyVar = MyVar + 1

'prints 3

161

& Portfolio PowerBasic
END SUB
Procedure definitions and program flow

The position of procedure definitions is immaterial.
They can be located anywhere in your source code,
although clarity is improved by grouping them
together in one region. You need not direct program
flow through a procedure as an initialization ste_p—the
compiler sees your definitions wherever they might be.

Also, unlike subroutines, execution can’t accidentally
“fall into” a procedure. As far as the execution path of a
program is concerned, function and procedure
definitions are invisible. For example,

CALL PrintStuff
SUB PrintStuff SHARED

PRINT "Printed from within PrintStuff"
END SUB

When this program is executed, the message is only
printed once.

Procedure definitions should be treated as isoiate_d
islands of code; don’t jump into or out of them with
GOTO, GOSUB, or RETURN statements. Within definitions,
however, such statements are legal.

Note that you can’t nest procedure definitions; that is,
you cannot define a procedure within another pro-
cedure (although a procedure definition can contain
calls to other procedures and functions).

You must terminate a procedure definition with END
SUB, which returns control to the statement directly

162

:

LULTLELELTTTLTTTLLES

C® portinlio PowerBasic

after the invoking CALL. Use the EXIT SUB statement to

return from a procedure definition before reaching the
END SUB statement.

See also: CALL, DEF FN, END SUB, EXIT SUB, GOSUB,
RETURN

TAB function

TAB moves the printing position to the specified
column.

TAB(n)

nis an integer expression in the range 1 to 255. TAB can
only be used in the expression list of an LPRINT, PRINT,
OF FRINT # statement. TAB(n) moves the print position to
the nth position on the current line. If the current print
position is already past n (for example, PRINT TAB(20)
with the print position at column 30), then Portfolio
PowerBASIC skips down to the nth position on the next
line.

If TAB appears at the end of a PRINT statement’s
expression list with or without a trailing semicolon,
Portfolio PowerBASIC does not output a carriage return;
that is, there is an implied semicolon after TAB,

See also: LPOS, LPRINT, PRINT, PRINT #, STRINGS

163

C® portfolio PowerBasic

TAN function

TAN returns the trigonometric tangent of its argument.

y = TAN(numeric expression)

numeric expression is an angle specified in radians. To
convert radians to degrees, multiply by 57.2958. To
convert degrees to radians, multiply by 0.017453. For
more information on radians, see ATN.

TAN returns a double-precision result.

See also: ATN, COS, SIN

TIMES system variable

TIMES is used to read or set the system time.
To read the time: s$ = TIMES
To set the time: TIMES$ = string expression

The system variable TIMES$ contains an eight-character
string that represents the time of the system clock in the
form “hh:mm:ss,” where /il is hours (in 24-hour mili-
tary form), mm is minutes, and ss is seconds. TIMES
won't be accurate unless the DOS clock was set cor-
rectly when the computer was last reset.

164

LULLLLTLEL DO

2 portiolio PowerBasic

Assigning a string expression to TIMES resets the system
c_iodf. The string expression must contain time informa-
tion in military (24-hour) format. Minute and second
information can be omitted. For example,

TIMES = "12" 12 noon

TIMES = "13:01" ‘1:01 PM

TIMES$ = "13:01:30" . F
TIMES = "0.01* 30 sec past 1:01 PM

1 min past midnight

If the hour, minutes, or seconds parameter is out of
range (for example, a minutes value of 61), run-time
error 5 occurs (“Illegal function call”).

See also: DATES

TONE statement

TONE generates a musical note for a specified duration
or a series of tones to dial a number on a touch-tone
telephone.

TONE note, duration
TONE touchtone$

note is an integer expression specifyi i

ying the musical note
to be pla)_red. A value of 0 (zero) represents silence for
the duration specified. The values 1..25 represent the

notes from D sharp (D#) in octave 5 through D sharp i
octave 7, respectively: iy

165

& portiolio PowerBasic

in octave 5

3t

Di#
E
F
F
G
G#
A

8- A#
9-Binoctave 5
10 - Cin octave 6
11 -C#
12-D

14 - E in octave 6
15-F

16 - F#

17-G

18 -G#

19-A

20 - A#

21 - B in octave 6
22 -Cinoctave 7
23 -C#

24-D

25 — D# in octave 7

13 - D# in octave 6

duration is an integer expression which specifies the
length of the note as measured in 10 millisecond (mS)
intervals.

touchtone$ is a string expression specifying the ton._ich-
tone phone number to be generated. It may contain one
or more of the following characters: 0’, ‘1", 2, '3, ‘4,
1511 16!' f7i" ’8" !9!" !A!‘ JBI" tC!f JDI’I .ry'l .r#.r.

See also: BEEP

TROFF and TRON
statements

TROFF and TRON turn program execution tracing off and
on.

166

ATLTRLLLLLTELTLTLLLLE

C& Portioio PowerBasic
TRON
TROFF

TRON puts your program into a debugging mode in
which source code line numbers are displayed as each
statement is executed; TROFF turns this debugging
mode off. The trace output is displayed along with the
program output.

UCASES function

UCASES returns an all-uppercase version of its string
argument.
s$ = UCASES$(string expression)

UCASES returns a string equal to string expression except
that all the lowercase alphabetic characters in string
expression are converted to uppercase.

See also: LCASES

VAL function

VAL returns the numeric equivalent of a string.

y = VAL(string expression)

VAL turns its string argument into a number. If string
expression begins with numeric characters (0 to 9, +, —,
or .), then VAL returns the number up to the point of the

167

C® portiolio PowerBasic

first nonnumeric character. If string expression doesn’t
begin with a numeric character, VAL returns 0. Leading
white-space characters (spaces or tabs) are ignored.

VAL is often used in data entry routines. With it, a
program can prompt the user for numeric data in string
form, then convert the legal portions of the string to
numbers.

See also: INSTR, LEFT$, MID$, RIGHT$, STR$

VARPTR function

VARPTR returns the offset portion of the address of a
variable.

y! = VARPTR(variable)

variable is any numeric or string variable or an element
of an array. VARPTR returns the offset portion of the
address in memory where the variable is stored. Such
address information is sometimes called a pointer; for
example, VARPTR(x) is said to return a pointer to x.

A segment value is also required to fully define an
address. VARSEG returns the segment portion of the
address.

When you use VARPTR to get the offset of a string, keep
in mind that the value being returned is the offset of
the string handle, not the actual data in the string. Use

168

.

1ULLLOLL0ETEEEEEREE

C® poniolio PowerBasic

STRPTR and STRSEG to find the address of the string’s
data.

VARPTR returns a floating point value in the range
0..65535. See page 52 for an example showing how to
convert this value to a signed integer in the range
—32768..+32767.

See also: DEF SEG, PEEK, POKE, STRPTR, STRSEG, VARSEG

VARSEG function

VARSEG returns the segment portion of the address of a
variable.

y! = VARSEG(variable)

variable is any numeric or string variable or element of
an array.

Both a segment and an offset value are required to fully
define the address of a variable. VARSEG returns the
segment portion of the address, and VARPTR returns the
offset portion. Use VARSEG in conjunction with VARPTR
to locate a variable in memory.

When you use VARSEG to get the segment of a string,
keep in mind that the value being returned is the
segment where the string handle is located, not the
segment where the actual contents of the string are
located; use STRPTR and STRSEG to find this address.

169

C2 porttolio PowerBasic

VARSEG returns a floating point value in the range
0..65535. See page 52 for an example showing how to
convert this value to a signed integer in the range
-32768..+32767.

See also: DEF SEG, PEEK, POKE, STRPTR, STRSEG, VARPTR

WHILE/WEND statements

WHILE and WEND define a loop of program statements
that is executed repeatedly as long as a certain
condition is met.

WHILE integer expression

. [statements}

WEND

If integer expression is TRUE (it evaluates to a nonzero
value), all of the statements between the WHILE and the
terminating WEND are executed. Portfolio PowerBASIC
then jumps back to the WHILE statement and repeats the
test. If it is still TRUE, Portfolio PowerBASIC executes the
enclosed statements again. This process is repeated

until the test expression evaluates to zero, at which
time execution passes to the statement following WEND.

If integer expression evaluates to FALSE (zero) on the
first pass, then none of the statements in the loop are
executed.

170

4

T

G2 portiolio PowerBasic

One common use of the WHILE/WEND construct is to
pause until a key is pressed:

PRINT "Press any key to continue..."
WHILE NOT INSTAT : WEND

Another use is to input data from a file until the end is
reached:

WHILE NOT EOF(1)
INPUT #1,X$
WEND

Loops built with WHILE/WEND statements can be
nested (enclosed within each other). Each WEND
matches the most recent unmatched WHILE. If Portfolio
PowerBASIC encounters a WEND statement without a
pending WHILE, run-time error 30 occurs, “WEND
without WHILE.” A WHILE without a matching WEND
generates run-time error 29, “WHILE without WEND.”

Although the compiler doesn’t care, you should indent
the statements between WHILE and WEND by a couple of
spaces to clarify the structure of the loop you've
constructed.

Note that
WHILE -1

'WEND

creates an infinite loop. To exit a WHILE/WEND loop
prematurely, use the EXIT LOOP statement.

171

. i

CB portfolio PowerBasic

Portfolio PowerBASIC'’s DO/LOOP construct offers a more
flexible way to build conditional loops.

See also: DO/LOOP, EXIT, FOR/NEXT

172

|

i

RRRRRRRRR R RRR

C2 portiolio PowerBasic

T - 2 | [B IR A <
A

Error messages

There are two fundamental types of errors in Portfolio
PowerBASIC: compile time and run time. Compile-time
errors are errors in syntax discovered by the compiler.
Run-time errors are anomalies caught at run time by
error-detection mechanisms which the compiler places
in your executable programs.

Run-time errors

Run-time errors occur when a compiled program is
executed. Examples include file-system errors (disk full
or write-protected), improper function call arguments,
memory errors (usually, not enough), and a host of
other problems.

173

C Portiolio PowsrBasic
Trapping run-time errors

Run-time errors can be trapped; that is, you can cause a
designated error-handling subroutine to get control
should an error occur. Use the ON ERROR statement to
accomplish this. This routine can “judge” what to do
next based on the type of error that occurs. File-system
errors (for example, disk full) in particular are well-
suited to handling such routines; they are the only
errors that a thoroughly debugged program should
have to deal with.

The ERROR statement (which simulates run-time errors)
can be used to debug your error-handling routines.

If run-time errors are not explicitly trapped by your
code, your program will abort upon encountering an
error condition. It will then display the error number
which occurred. For example;

Error nnn

where nnn is a three-digit error code. If your program
includes line numbers, the number of the most recently
executed numbered line will also be displayed as part
of the message:

Error nnn at line 11111

where nnn is a three-digit error code and Il is the line
number.

174

RRRRARRRERRRRRRRY)

Compiler errors

Most compile-time (compiler) errors are errors of
syntax, caused by missing symbols, misspelled
commands, unbalanced parentheses, and so on. If the
compiler finds something in a source program that it
cannot understand or permit, compilation is terminated
and an error message is displayed with the line number
where the error occurred. You can then edit the
offending statement and recompile your program.

Run-time errors—Ilisting

2 Syntax error

A run-time syntax error has been created by a READ
statement trying to load string data into a numeric
variable. Other syntax errors are caught by the
compiler at compile-time.

4 Out of data
A READ statement ran out of DATA statement values.

5 Illegal function call

This is a catch-all error related to passing an in-
appropriate argument to some statement or function. A
few of the 101 things that can cause it:

B Trying to perform invalid mathematical
operations, such as taking the square root of a
negative number.

175

C® Partiolio PowerBasic
® A record number is too large (or negative) in a GET
or PUT,
6 Overflow

An overflow is the result of a calculation producing a
value too large to be represented in the indicated
numeric type. For example, x% = 32767 + 1 causes
overflow because 32768 can’t be represented by an
integer.

7 Out of memory

Many different situations can cause this message,

including dimensioning too large an array or using up
all of string space.

9 Subscript out of range

You attempted to use a subscript larger than the
maximum value established when the array was
DIMensioned.

11 Division by zero
You attempted to divide by zero or to raise zero to a
negative power.

13 Type mismatch

You used a string value where a numeric value was
expected or vice versa. This can occur in PRINT USING
statements.

14 Out of string space
String storage space is exhausted.

15 String too long
The string produced by a string expression is longer
than the maximum string size.

176

Eq

LLLELUUULLLLELLEELE

C® portiolio PowerBasic

19 No RESUME

Program execution ran to the physical end of the
program while in an error-trapping routine. There may
be a missing RESUME statement in an error handler.

20 RESUME without error .

You executed a RESUME statement without an error |
occurring; that is, there is no error-handling subroutine
to RESUME from.

24 Device time-out rA

The specified time-out value for a communications
status line has expired. Time-out values can be
specified for the ClearToSend, CarrierDetect, and‘
DataSetReady status lines. The program should eltl-l.er
abort execution or retry the communications operation.

27 Out of paper ; :
The printer interface indicates that the printer is out of
paper. The printer can also be turned off or have some
other problem.

50 Field overflow _
Given the file’s record length, you attempted to define
too long a set of field variables in a FIELD statement.

51 Internal error

A malfunction occurred within the Portfolio
PowerBASIC run-time system. Call Atari’s Technical
Support group with information about your program.

177

2 portiolio PowerBasic

52 Bad file number

The file number you gave in a file statement doesn'’t
match one given in an OPEN statement, or the file
number may be out of the range of valid file numbers.

53 File not found
The file name specified could not be found on the
indicated drive.

54 Bad file mode

You attempted a PUT or a GET (or PUT$ or GET$) on a
sequential file.

55 File already open
You attempted to open a file that was already open, or
you tried to delete an open file.

57 Device I/O error
A serious hardware problem occurred when trying to
carry out some command.

58 File already exists
The new name argument specified in your NAME
statement already exists,

61 Disk full

There isn’t enough free space on the indicated or
default disk to carry out a file operation. Create some
more free disk space and retry your program.

62 Input past end

You tried to read more data from a file than it had to
read. Use the EOF (end of file) function to avoid this
problem. This error can also be caused by trying to read
from a sequential file opened for output or append.

178

LLLTLELTLTTTTTTTTIeece

C® portiolio PowerBasic

63 Bad record number

A negative number or a number which is too large was
specified as the record argument to a random file PUT
or GET statement.

64 Bad file name
The file name specified in a KILL or NAME statement

contains invalid characters.

67 Too many files

This error can be caused either by trying to create too
many files in a drive’s root directory, or by an invalid
file name that affects the performance of the DOS
Create File system call.

68 Device unavailable

You tried to OPEN a device file on a machine without
that device; for example, COMI on a system without a
serial communications port.

69 Communications buffer overflow

You executed a statement to INPUT characters into an
already full communications buffer. Your program
should either check and empty the buffer more often or
provide a larger buffer size.

70 Permission denied
You tried to write to a write-protected disk.

71 Disk not ready
The door of a floppy disk drive is open, or there is no
disk in the indicated drive.

179

C portolio PowerBasic

72 Disk media error
The disk controller indicates a hard media error in one
or more sectors.

74 Rename across disks
You can’t rename a file across disk drives.

75 Path/File access error

During a command capable of specifying a path name
(OPEN, NAME, or MKDIR, for example), you used a path
inappropriately; trying to OPEN a subdirectory or to
delete a directory in-use, for example.

76 Path not found
The path you specified during a CHDIR, MKDIR, OPEN,
etc., can’t be found.

201 Out of stack space

You have run out of stack space. You can increase the
stack space available with the $STACK metastatement.
You can also reduce the amount of recursion being
done by recursive procedures and functions in your
code.

242 String/array memory corrupt

The string memory area has been improperly over-
written. This could be caused by the improper action of
an interrupt routine, by string array access outside of
the dimensioned limits, by an error within the Portfolio
PowerBASIC run-time system, or by a stack which is too
small. If the stack is too small, increase the stack size
with the $STACK metastatement.

180

LLLEeeeLeLeLLLLLLLe

C® portiolio PowerBasic

Compiler errors—listing

401 Expression too complex

The expression contained too many
operators/operands; break it down into two or more
simplified expressions.

402 Statement too complex

The statement complexity caused an overflow of the
internal compiler buffers; break the statement down
into two or more simplified statements.

405 Block nesting overflow

Your program has too many statement block structures
nested within each other. Portfolio PowerBASIC block
structures may be nested 64 levels deep.

406 Compiler out of memory
Available compiler memory for symbol space, buffers,
and so on, has been exhausted. Try the following steps:

1. Remove unnecessary line numbers and labels.

2. Shorten your variable and procedure names.

3. Reset your Portfolio in order to unload any
memory-resident programs, such as PBRUN (the
Portfolio PowerBASIC run-time library).

408 Segment exceeds 64K

Your program code exceeds the 64K limitation. Try to
reduce the number of lines in your program which
actually generate code (removing REMarks won't help,
for example).

181

3

C porfolio PowerBasic
409 Variables exceed 64K
All variables (except for string data) are limited to 64K
total space. String descriptors, as well as all integer,
floating-point, and array variables, are included in this
space. Try to remove any unused variables or reduce
the size of any arrays in your program.

410 “,” expected
The statement’s syntax requires a comma (,).

411 “;” expected
The statement’s syntax requires a semicolon (;).

412 “(” expected g
The statement’s syntax requires a left parenthesis (().

413 “)” expected
The statement’s syntax requires a right parenthesis ()).

414 “=" expected
The statement’s syntax requires an equal sign (=).

415 “-" expected
The statement’s syntax requires a hyphen (-).

416 Statement expected

A Portfolio PowerBASIC statement was expected. Some
character could not be identified as a statement,
metastatement, or variable.

417 Label/line number expected
A valid label or line-number reference was expected in
an IF, GOTO, GOSUB, or ON statement.

182

*’{

UL

B Portioio PowerBasic

418 Numeric expression requires relational operator
The compiler has found a string operand in a position
where a numeric operand should be.

419 String expression requires string operand
The compiler expected a string expression and found
something else; for example, X$ = A$ + 3.

420 Scalar variable expected

The compiler expected a scalar variable in a SUB or DEF
FN definition, or as a parameter in a CALL statement.
Scalar variables include non-array string variables,
integer variables, single-precision floating-point
variables, and double-precision floating-point
variables.

421 Array variable expected
An array variable was expected in a DIM statement.

422 Numeric variable expected
A numeric variable was expected in a statement or
function.

423 String variable expected

A string variable was expected in a FIELD, GETS, PUTS, or
LINE INPUT statement.

424 Variable expected

A variable was expected in a VARPTR or VARSEG
function.

426 Positive integer constant expected

A positive integer constant was expected in the array
bounds for a DIM statement or in the $COM or $STACK
metastatements.

183

C® portfolio PowerBasic

428 Numeric scalar variable expected

Either an integer, single-precision floating-point, or
double-precision floating-point variable is expected; for
example, in a FOR/NEXT loop.

431 End of line expected

No characters are allowed on a line (except for a
comment) following a metastatement, END SUB, or a
statement label.

432 AS expected
The AS reserved word is missing in either a FIELD or
OPEN statement.

433 DEF FN expected

The compiler found an END DEF or EXIT DEF statement
without a DEFFN function defined. When defining a DEF
FN function, it must begin with a DEF FN statement.

434 TF expected
The compiler found an END IF or an EXIT IF statement
without a beginning IF statement defined.

435 DO loop expected
The compiler found a LOOP or EXIT LOOP statement
without a beginning DO statement defined.

438 FOR loop expected
The compiler found an EXIT FOR statement without a
beginning FOR statement defined.

439 SUB expected

The compiler found an END SUB or EXIT SUB statement
without a procedure defined. You must define a
procedure by beginning it with a SUB statement.

184

PILLEEeiereerereece

G2 portiolio PowerBasic

440 END DEF expected
A DEFFN function wasn’t terminated with a
corresponding END DEF statement.

441 END IF expected

An IF block wasn't terminated with a corresponding
END IF statement.

442 LOOP/WEND expected
A DO or WHILE loop was not terminated with a
corresponding LOOP or WEND statement.

444 END SUB expected
A procedure was not properly terminated with an END
SUB statement.

445 NEXT expected
A FOR loop was not properly terminated with a NEXT
statement.

446 THEN expected
An IF statement is missing its accompanying THEN part.

447 TO expected
A FOR statement is missing its accompanying TO part.

448 GOSUB expected
An ON statement is missing its accompanying GOSUB
part.

449 GOTO expected
An ON statement is missing its accompanying GOTO
part.

185

B portiolio PowerBasic

454 Undefined function reference

You used a function name in an expression without
defining the DEF FN function. Check the name of the
function for mistakes or provide a definition for the
function.

455 Undefined SUB procedure reference

You used CALL to a procedure, but you did not define
the procedure. Check the name of the procedure for
mistakes or provide the procedure.

456 Undefined label/line reference

You used a line number or label in an IF, GOTO, GOSUB,
or ON statement, but you did not define the label or line
number. Check the label or line number for mistakes or
provide a label.

458 Duplicate label/line number

The same label or line number was used twice. Check
your program for duplicate labels or line numbers and
change them so that they are unique.

460 Duplicate function definition

A DEF FN name was defined more than once in your
code. Check your program for duplicate names and
change them so that they are unique.

461 Duplicate SUB procedure definition

A SUB name was defined more than once in your code.
Check your program for duplicate names and change
them so that they are unique.

186

LLELLEETELLTTTTTILILL

2 portfolio PowerBasic

463 Duplicate variable declaration

Two variables with the same name have been declared.
Check your program for duplicate names and change
them so that they are unique.

464 Duplicate $COM definition

More than one $COM metastatement was encountered
in your program.

466 Duplicate $STACK definition

More than one $STACK metastatement was encountered
in your program.

467 Invalid line number

Line numbers must be in the range 0 through 32767.

468 Invalid label
A label in your code contains invalid characters.

469 Metastatements not allowed here
A metastatement must be the first statement on a line.

470 Block/Scanned statements not allowed here
Block statements (like WHILE/WEND and DO/LOOP) are
not allowed in single line IF statements. Also, you
cannot have a procedure or function definition nested
within the body of another definition.

471 Syntax error
Something is incorrect on the line—the compiler could
not determine a proper error message.

475 Parameter mismatch
The type or number of parameters does not correspond
with the declaration of the function or procedure.

187

C® portiolio PowerBasic

476 CLEAR parameter

The additional parameters available to the CLEAR
statement in Interpretive BASIC are not available in
Portfolio PowerBASIC.

486 Array exceeds 64K
The size of an array cannot exceed 64K (one data
segment).

487 Arrays limited to eight dimensions

The maximum number of dimensions that can be
specified for an array is eight. This is an internal limit
for the compiler.

488 Invalid numeric format

Your program declared a number with more than 16
digits or a floating-point number witha D or E
component without the exponent value.

489 Invalid function/procedure name

A function or procedure has an invalid name. In the
case of a DEF FN function, FN must be followed by a
letter and then other letters, digits, and periods,
optionally ended with a type identifier (%, !, #, or $). In
the case of a SUB procedure, the name must begin with
a letter and can be followed by other letters, digits, and
periods, but may not include a type identifier.

500 CLEAR not allowed here
CLEAR is illegal within a procedure or function.

501 Line too long

A line of program code can contain at most 388
characters, including underscores. Break the line down
into two or more shorter lines.

188

ks . ol

3

Dy wwpiwie

B portiolio PowerBasic

502 Duplicate definition
A program element which should only appear once
was duplicated in your code.

503 SHARED expected

A SUB definition was encountered which did not
include the keyword SHARED.

601-606 Internal error

If this error occurs, report it immediately to Atari’s
Technical Support group.

189

190

C& portiolio PowerBasic

s el

'[»

Dy ey y e

2 Portiolio PowerBasic
I N D E X

<> (inequality) 47 -RUN files
<= (relationaroperator) defined 2

47 $STACK metastatement
=< :(7r\elational operator) 54

4
=> (relational operator)

47 - A
>= (relational operator) ABS function 55

47 absolute value of a
+ (addition) 44, 46 number 55
= (equality) 47 addition (+) 44, 46
" (exponentiation) 44,46 address book

/ (floating-point
divisiot%)lﬁ, 46

$ (formatting) 139

% (formatting) 140

* (formatting) 139

+ (formatting) 138

" (formatting) 140

> (greater than) 47

\ (integer division) 44, 46
< (less than) 47

. (multiplication) 44, 46
— (negation) 44, 46
— (subtraction) 44, 46

files
defined 4

$COM metastatement 54

191

using the built-in 10
addresses
si-rin}gs
offset portion 158
segment portion 159
variables
offset portion 168
segment portion 169
Ameriggg Staggard Code
for Information Inter-
change 56
AND operator 44, 48, 49
angles 56
arctangent 56
arrays 2
defined 38
dimensioning 39, 76

double-precision
floating point 34
initializing 39
multidimensional 41
numeric

memory available 92
storage requirements

41

string 40
subscripts 40
first element 40
ASC function 55
ASCII codes
characters 55, 63
nonkeyboard 63
defined 55 e
screen ition 1
asterisk (P)QS
formatting with 139
ATN function 56

B
BEEP statement 58
BIN$ function 59
binary files
file pointer position
154

GET$ function and 93
LOC function and 113
OPEN statement and
125

opening 125
PEJT$ fﬁncﬁon and 144
reading 93, 125

C poriolio PowerBasic

SEEK statement and
154
strings 144
writing 125
binary strings 59
blocks, ending 82

C

CALL INTERRUPT
statement 61
REG and 146

CALL statement 60

carets (*), formatting with
140

categories of commands
15

changing current
dir%-lctcgiry 62

characters
italic 14
leftmost 109
literal 140
lowercase 109
multiple copies of 158
nonkeyboard 63
in printer buffer 115
reading from keyboard
105 e
replacing in strin;
rigphtmogt 151 g
set of 27, 34
underscore 23

u rcase 14, 167
CHB%% statement 62

192

JEESEseETtetat

-H-H%

CHRS$ function 63
CIRCLE statement 63
CLEAR statement 64
CLOSE statement 64
CLS statement 65
.COM files

defined 4
$COM metastatement 54
C%GMMAND$ function
command line 66
commands

categories of 17
commas

im;)ortance to INPUT #

10

comments 23, 24
%ATA statement and
REM statement 148
tips and techniques 24
communications
ports
obtaining status of
113,114
opening 127
reading 102, 105, 112
setting buffer size 54
writing 130, 141
compile
how to 7
compiler 1
constants 35
declaring for the
READ statement 69

193

& portiolio PowerBasic

floating point 36
numeric 36
forming 28
precision rules 36
string 35
transcendental 58
continuing lines 23
control sequences for
printer output 63
control structures
conditional branches
ELSE keyword 99
ELSEIF keyword 99
IF block statement 99
IF statement 97
endless loops in 64
;exi[‘in 986
oops
B30/LooP
statement 78
EXIT and 79
FOR/NEXT
statement 89
indenting 81
logical operators and
81

nesting 80, 90
EXIT LOOP and
81
indenting and 82
S 90
HILE/WEND
statement 170

converting

degrees and radians 57

COS function 66

cosine 66

CSRLIN function 67

cursor position 67, 114,
133, 163

customer su rt 12

CVD fl.lnctioli'lpgS

CVI function 68

CVS function 68

D
data segment
deﬁn%:é 75
DATA statement 69
comments 24
reading 145
REST! statement
and 149
data ty
convepretsi,n 68,120
declaring 74
example 32
list 31
date
reading and setting 70
D?TE$ system varia%]e

0
debugging
tracing execution 166
DEF FN%END DEF
statement 71
returning from before
END D

statement 74

C® Portiolio PowerBasic
DEF SEG statement 75

DEFDBL statement 34, 74

definition of syntax
terms 19-22

DEFINT statement 32, 74

DEFSNG statement 33,
74
DEFSTR statement 74
DEFtype defined 31
DEFtype statements 74
de s 56
deletin
disk files 108
DIM statement 76
arrays 39, 40
directories
changing 62
creating 120
current 62
removing 108, 151
display mode
selecting 154
DO/LOQOP statement 78
dollar sign ($)
formatting with 139
DOS
CHDIR command 62
DEL command 108
ERASE command 108
MKDIR command 120
REN command 121
RMDIR command 151

194

_g,

RERSRRRRRRR R Ry

{

E

editor
using the built-in 9
ELSE k ord 99
ELSEIF keyword 99
END statement 82
endless loops 64
EOF function 83
ual to (=) 47
ERL function 84
ERR function 84
ERROR statement 84, 174
errors 173
compile-time 181-189
compiler 175
ﬁndmg 84
restarting programs
after 149
run time 173
run-time 175-180
simulating 84
trapping 123, 174
event trapping
run-time errors 174
exclusive OR (XOR) 44
exehcgtable file ;
changin of 5
EXE gsgﬁzement 85
EXIT statement 86
gg(IT LOOP statement
EXP function 87
exponentiation (") 44, 46
exponents 87
expressions 42-45

C2 portiolio PowerBasic

operands and 42
operators and 42

F

FIELD statement 88
continuing 23
field variables 88
file specification
defined 21
files
closing 64
disk
deleting 108
reading 105
1/0 64
length of
nding 114
modes of 125
naming 121
OPEN statement and
125
opening 125
pointers
location of 113
reading 105, 125
renaming 121
writing to 125
formatted
information 141
floating point
constants 36
converting values 68,
120
declaring variables 74

195

division (/) 44, 46
double precision 34,
68, 74, 120
arrays and 34
declaring 34
printing 135
single precision 33, 68,
4, Igﬁ
declaring 33
printing 135
FOR/NEXT statement 89
formatting
asterisk (*) 139
carets () 140
dollar sign ($) 139
literal characters 140
numeric expressions
136-141
rcent sign (%) 140
gleus sign §+) 138
pound sign (#) 138
scientific notation 140
signed numbers 138
strings 137
unsigned numbers 138
FRE function 54, 91
functions
DEF FN 71
ending 82
exiting 86
naming 28
nesting 73
predefined 18
tips and techniques 73
variables in 73

C2 partiolio PowerBasic

G
GET$ function 93
GET statement 92
GOSUB statement 94
GOTI? statement 95
raphics
B cgaracters 63
graphics mode
rawing circles in 63
drawing lines in 110
resetting points in 143
selecting 154
setting points in 143
testing points in 132
grzgter than (operator)

H

help file
using 10
HEX$ function 96

|

identifiers, forming 28

IF block statement 99

IF statement 97

improper synchron
bpeth:en EEAD ar)id
DATA 69

indenting program lines
81

inm;uality operator (<>)
4

196

B

TR

:

INKEY$ function 101
compared to INPUT
statement 101
extended key codes
and 101

INP function 102

INPUT # statement 104

INPUTS$ function 105

INPUT statement 103
compared to INKEY$
function 101

installation 6

INSTAT function 106

INSTR function 107

INT function 107

integers 32
converting 68, 120
declaring 32, 74
division (\) 44, 46
signed and unsigned
52 2

interrupts 61
inverse tangent 56
1/0
rts
poreading 102
writing 130
screen 133

K

keyboard
extended key codes
101

G2 portiolio PowerBasic

reading 101, 103, 105,
111
status 106

KILL statement 108

L
labels
defined 21, 25
jumping to 95
ine numbers vs. 24
naming 28
tips and techniques 24
LCXSE$ function 109
LCASES$ function, tips and
techniques 51
LEFT$ function 109
LEN function 110
less than (operator) 47
LET statement 110
LINE INPUT # statement
112
LINE INPUT statement
111
line numbers 21
jumping to 95
Ll'}\TE sl?tat%ment 110
lines
continuing 23, 98
DATA statement
and 70
length 23
numbering 21, 24
labels vs. 24

197

tips and techniques 23,
24

literal characters 140
LOC function 113
LOCATE statement 114
location of file pointers
113
LOF function 114
LOG function 115
logical operators
?:1 loogfests 81
LPOS function 115
LPRINT statement 116
LPRINT USING
statement 116
LSET statement 117
FIELD statement and
88

M

memor
free 91
modifying 132
numeric arrays and 92
strings and 34, 92
viewing 131
metastatements 54-55
$COM 54
defined 19, 26
$STACK 54
MID$ function 118
MID$ statement 119
MKD#$ function 120
MKDIR statement 120

198

199

C Porolo PowerBasic °T= Portolo PowerBasi
: turning strings into 167 ON/GOSUB statement
M&%ﬁ?&%&]122% = numeric expressions 123
MOD operator 44, 46 __ absolute value of 55 ON/GOTO statement
modulo (MOD) 44, 46 GT‘: 2 N PO e .
multiplication (*) 44, 46 _ o cviais St s
. converting 107, 120 127
beeps 58 stri ata 68 OPEN statement 125
ols 160 - defined 20, 42 operands, defined 42
formatting 136-141 operators 45-50
- hexadecimal 96 defined 42
N ordsr of evaltéaetion 44 logical 44, 48-50
- random numbers and order of evaluation
NAME statement 121 GTa 145 (precedence) 44
names o > sign of 155 relational (< <= =>=>
S e signed format 138 <>)44,46,47
naming conventions 28 - SoSEe o7 e s
tura%]o b 87 syntax of 20 _ expressions 50
na tion ©) 44t1m46|5 = unsigned format 138 tips and techniques 44
Eggtainon Ll numeric operators 45 OR oPe;-ator 44,48 50
- numeric values order of evaluation 44
gg /NEXT statements "1': writing to a file 141 OUT statement 130
functions and -
rocedures 73 . (o) P
lgospt"s‘tga“e“ts 100 G-r’ 0ng‘$ function 122 parameters :
- offset pass-by-reference 60
E&rbzﬁrattzﬁ GT: of string variables’ path %
binary 59 GT, c?ntentsl.: 11 58 defined 21
; . : of variables 168 specifier 21
e ON ERROR GOTO PEEK function 131
E ega? decimal 9% statement percent i:gn (%), formatting
octal 122 ; RESUME and 149 with 1
fitmBass ON ERROR statement pi (m) 57
random 145, 152 - s PO
as strings 157 formatting with 138

POINT function 132
POKE statement 132
POS function 133
positive value of a
number 5%)
und si #
poformatg?lg with 138
PRINT # statement 141
PRINT # USING
statement 141
PRINT statement 133
continuing 23
using STR$ with 135
PRINT USING statement
136
printer
buffer
number of characters
in115
changing time-out
value 116
control sequences 63
printhead position 115,
163
sending data to 116
printing
to the screen 133, 136
procedures
calling 60
defining 160
exiting
naming 28, 160
nesting 73
ggssing parameters to

C2 portiolio PowerBasic

g{?g%m flow and 162

product support 12
program flow 95
controlling 124
programs
compiling and running
7

creating 9

ending 82

executing other 85

indenting in 81

line length 23

reserved words 29
PSET statement 143
PUTS$ statement 144
PUT statement 143

radians 56
converting to degrees
7

random-access files
converting data for 120
FIELD statement and

88

functions for 68, 120
GET statement and 92
LOC function and 113
LSET statement and
117

OPEN statement and
125

opening 125

200

g

D ey wie:

PUT statement and 143
reading 92, 125
RSET statement and
152
strings and 117, 152
variables and 88
writing to 125, 143
random numbers
enerating 145, 152
R.‘EN DOMIZE statement
145
READ statement 145
resetting pointer of 149
records
reading 92
reference directory
organization of 19
REG function and
statement 146
isters
uffer 61, 146
interrupts and 61
REM statement 148
remarks 148
reserved words 30
font used for 14
RESTORE statement 149
RESUME statement 149
RETURN statement 150
returning from functions
before END 74
RIGHTS$ function 151
RMDIR statement 151
KILL statement and
108

201

C2 portiolio PowerBasic

RND function 152

RSET statement 152
FIELD statement and
88

.RUN files
defined 2

run time
arguments 66
stack 54

run-time library
defined 1
distributing 12

S

scientific notation 140
screen

clearing 65

cursor gosition on 67,

114,13

I/Oon 133, 136

position

ASCII code at 153

writing to 141
SCREEN function 153
screen mode

selecting 154
SCREEN statement 154
SEEK statement 154
segments

of string variables’

contents 159

of variables 169
sequential files

appending to 125

INPUT # statement
and 104
LINE INPUT #
statement and 112
LOC function and 113
OPEN statement and
125
opening 125
reading 104, 112, 125
writing to 125

SGN function 155

SIN function 155

sine 155

SQR function 156

square root 156

stack
run time 54
size 54

$S'51“4 ACK metastatement

statements 22
defined 18
STR$ function 157
STRINGS$ function 158
string expressions
as constants 69
converting 68
defined 20, 42
file specifications as 21
order of 51, 52
paths as 21
relational operators
and 50
strings 34
as field variables 88

202

& portiolio PowerBasic

binary files and 144
case of 109, 167
characters in
multiple copies of
158
converting into
numbers 167
formatting 137
leftmost characters of
109
length of
nding 110
lowercase 109
memory available for

memory use 34
multiple copies of
a character of 158
naming 28
numeric equivalent of
167
octal 122
part of
finding 118
tterns
finding 107
random-access files
and 117, 152
refi'rl]agcing characters in

rig}:jtmost characters of
151
turning into numbers

167
uppercase 167

2yt

TR

variables

15

112

date 70

time 164

offset of contents 158
offset of handle 168
ent of contents

segment of handle
‘16511.l

writing to
from a sequential file

from the keyboard
111

STRPTR function 158
STRSEG function 159
SUB/END SUB

statement 160
subroutines

calling 94, 123

returning from 150
subtraction (-) 44, 46
su{){ort, technical, getting

yntax
definitions 19-22
of file specification 21
of labels 21
of numeric expressions

of paths 21
of string expressions 20
system variables

defined 18

C® portiolio PowerBasic
T
TAB function 163
TAN function 164
tangent }64
technical support
contacting fg
text mode
selecting 154
time
reading and setting 164
TIMES$ system variable
164
tips and techniques
closing files
DATA statements 24
END statement 82
functions 73
indenting 81
line length 23
line numbers and
labels 24
naming variables 37
operators 44
rocedures 162
TONE statement 165
tones
generating 165
tracing program
execution 166
trailer 66
transcendental constants

trapping run time errors
74

203

C® poriofio PowerBasic :_TQI
trigonometric functions LET statement and 110 -
arctangent 56 loading with data 104, GTa
cosine 66 110, 145
inverse tangent 56 naming 28, 37 GTa
sine 155 rules 28
tangent 164 tips and techniques G-ra
TROFF statement 166 3? i
TRON statement 166 numeric 20 91;0
truth table, logical operators random-access files =
and 88
two’s complement 59 strin
typefaces 13 offset of contents 158
offset of handle 168
segment of contents
U 15
UCASES$ function 167 segment of handle -
UCASES$ function, tips and 16 B
techniques 51 types 37 —
underscore 98 types of 74
DATA statement and writing to -
70 from the keyboard
underscore character 23 111 :
user groups 12 VARPTR function 168
VARSEG function 169 c_ra
V -
VAL function 167 W . I
variables 37-38 WHILE/WEND -
addresses of 168, 169 statement 170
assigning values to 110 DO/LOOPs and 79 -
clearing (setting to
zero) -
declarinF X
default types 74 XOR operator 44, 49, 50 :
functions and 73
204 O‘T"

k!

\
v

A

0

AN

ATARI
COMPUTRR

Copyright © 1991, Atari Corporation
Sunnyvale, CA 940891302

All rights reserved.

Printed in USA. 439

A

6L L

C398792-001 Rev. A

A ATARI

Portfolio

PORTFOLIO
POWERBASIC®

USER'S MANUAL

io erBASI"‘

b > 3 g.v B
Portfol
] f_:{f‘a) DN n{hﬁ"'

Portiolio PowerBASIC is 8 TM of and licensed from
Spaectra Publishing. & 1987, 1990, Robert S. Zale
Al rights reserved. HPC-705 (302205-001 Rev. A

LTI

	page 0002.jpg
	page 0003.jpg
	page 0004.jpg
	page 0007.jpg
	page 0008.jpg
	page 0009.jpg
	page 0010.jpg
	page 0011.jpg
	page 0012.jpg
	page 0013.jpg
	page 0014.jpg
	page 0015.jpg
	page 0016.jpg
	page 0017.jpg
	page 0018.jpg
	page 0019.jpg
	page 0020.jpg
	page 0021.jpg
	page 0022.jpg
	page 0023.jpg
	page 0024.jpg
	page 0025.jpg
	page 0026.jpg
	page 0027.jpg
	page 0028.jpg
	page 0030.jpg
	page 0031.jpg
	page 0032.jpg
	page 0033.jpg
	page 0034.jpg
	page 0035.jpg
	page 0036.jpg
	page 0037.jpg
	page 0038.jpg
	page 0039.jpg
	page 0040.jpg
	page 0041.jpg
	page 0042.jpg
	page 0043.jpg
	page 0044.jpg
	page 0046.jpg
	page 0048.jpg
	page 0049.jpg
	page 0050.jpg
	page 0051.jpg
	page 0052.jpg
	page 0053.jpg
	page 0054.jpg
	page 0055.jpg
	page 0056.jpg
	page 0057.jpg
	page 0058.jpg
	page 0059.jpg
	page 0060.jpg
	page 0061.jpg
	page 0062.jpg
	page 0063.jpg
	page 0064.jpg
	page 0065.jpg
	page 0066.jpg
	page 0067.jpg
	page 0068.jpg
	page 0069.jpg
	page 0070.jpg
	page 0071.jpg
	page 0072.jpg
	page 0073.jpg
	page 0074.jpg
	page 0075.jpg
	page 0076.jpg
	page 0077.jpg
	page 0078.jpg
	page 0079.jpg
	page 0080.jpg
	page 0081.jpg
	page 0082.jpg
	page 0083.jpg
	page 0084.jpg
	page 0085.jpg
	page 0086.jpg
	page 0087.jpg
	page 0088.jpg
	page 0089.jpg
	page 0090.jpg
	page 0091.jpg
	page 0092.jpg
	page 0093.jpg
	page 0094.jpg
	page 0095.jpg
	page 0097.jpg
	page 0098.jpg
	page 0099.jpg
	page 0100.jpg
	page 0101.jpg
	page 0102.jpg
	page 0103.jpg
	page 0104.jpg
	page 0105.jpg
	page 0106.jpg
	page 0107.jpg
	page 0108.jpg
	page 0110.jpg
	page 0111.jpg
	page 0112.jpg
	page 0113.jpg
	page 0114.jpg
	page 0115.jpg
	page 0116.jpg
	page 0117.jpg
	page 0118.jpg
	page 0119.jpg
	page 0122.jpg
	page 0123.jpg

