TOKENS AND BASIC STORAGE

Your BASIC programs are stored, line by line, in a partially
pre-digested form startihg(normally) at memory location 0301, All
BASIC keywords (FOR, GOTO, END, =, CHR}, etc.) are stored ‘as one-byte
"tokens”. Tokens always have the highest bit on (i.e., they are
always greater than 12810.) Other parts of your BASIC' statements
(like AA and 123 in LET AA=123) are stored as the ASCII characters
you typed in. The'line number is stored as a two-byte straignht
binary number. (That does not explain why the highest allowed line
number is 63999 instead of 65535!) In addition to these, each stored
line of BASIC source contains a two byte pointer containing the
" address of the next stored BASIC line. (This lets BASIC search
rapidly for a given line number.) The format of BASIC statement
storage is always like this:

null pointer to 1line # BASIC code; tokens and ASCII null of
next line co o aa next line
(That information alone is enough to let you write a BASIC program
renumbering program.)

The "normally starting at 0301" can provide interesting possibilities.
"BASIC workspace®--the area in memory where your progrem and variables
are stored--begins at whatever address is contained in locations
0079,007A. (Machine addresses arenormally stored lo byte, hi byte.
Thas, when the coldstart routine initializes these locations, it puts
01 in 0079 and 03 in 007A.) Now, if you change this (with your
‘trusty ROM monitor or with POKE statements), you can make BASIC
store your programsanywhere you choose., In fact, you could have
one program stored starting at 0301, another at 0901, and another...
all using the same line numbers, if you want! BASIC will find only
one at a time for running and listing--the one whose beginning is
contained in 79,7A. Note: the byte immediately before the first
line must be the initial null. Normally, the system puts a permanent
0 in loc 0300, and the first byte of the first pointer goes in 301,
~ You must put the initial null in (at 0900 in the example above) or
nothing works., After you change 79,7A and put in that initial zero,
type NEW to reset some other pointers. Unfortunately, if you put
one program one place; reset 79,7A and put another somewhere else,
trying to edit the first one will blow up the second program and
not work in the first. You can, however switch back and forth if
all you do is run and 1list the progrems., {&-Iittlefancy work-with

If|you also replace 7B,7C, programs are editable and can run happily.

. NOTEL Either avoid programs with lots of variables that can wipe out other programs,
or hlso update 85,86 to indicate that the top of memory is just below the next program
up. The hard one to fix is 7B,7C. It points to variable workspace--so BASIC POKE
statements using variables can't fix 1t: the variables are lost between the first

and second POKEs!
T

BASIC VARIABLE STORAGE S
BASIC also needs space to store variables, These are stored
in memory above the program--numeric variables, preceeded by thekr
names from the end of the program going up, and string variables
from the top of memory going down--their names being kept in a
table along with where in memory the strings actually lime. Two
data areas(with name tables) are kept--one for arrays (string and

numeric), the other for single variables (string or not) and functions. Since only 7
bits are needed for each character of the variable name, the highest bits are used

to show what type of variable is stored. A 1 in the second character indicates a

string., A 1 in the first character indicates a function. (In DEF FNAB(X).) Both first
bits high indicates a string function (FNAB$), although the system does not support them.

Single variables are stored immediately following the program,
starting at the address pointéd at by 7B,7C on page zero. (The
abbreviation (7B,7C) is used to indicate the contents of 7B,7C.
Thus, the sihgle variables start at (7B,?C).) Each variable is
stored in anixed 1ength)ksix byte block in this area:

function loc of first loc of
function name ~ char after = dummy variable
[(ASCII) in DEF stmt .

this bit set if function

numeric variable

variable name floating point value

'] (ASCII) , '

string variable location

variable '~ name length of string 00
(ASCII)

K—-—'—\‘ ‘x e

this bit is set to
indicate a string

To find a variable, BASIC searches the names, starting at (78B,7C),
skipping to the next name 6 bytes later'til a match is found.(If
a string is being searched for, the actual . string is not here, but

at the address contained in the 4th and 5th bytes.,) The search
ends if a match is not found by the end of the area, (7D,7E).

-——

Arrays are stored in assorted length blécks from (7D,7E) to -
(7F,80) as follows: | _

numeric variable length of number of size of last size of next element \felement
arrays name this block subscripts subseript to.last subsc.«. 0,0...,0]1,0...,0 jete

string variable length of number of size of last néxt-to-last loc of oc of

arrays name this block subscripts subscript subseript |, , element |/ element Jetc

[} 0,0..., 1’00-.,0

== | S SRR

this bit set

To find an array element, Basic starts at (7D,7E) and looks at the
name, then skips to the name in the nex$ block (that's why we have
that 3rd byte) etec until a match is found, then skips 4 bytes per
element until it finds the element it wants., (If 1it's a string,

we have the lengih and location of the string, not the actual string.)
This table is over at (77,80).

" Strings are actually stored starting at the top of memory

(as indicated by (85,86)). Modifying the contents of 85 and 86

(or having answered a number less than the actual memory size to
*MEMORY SIZE?" .at coldstart)will keep the strings from wiping out
any other programs or data you may want to tuck safely away in the
top of BRAM., BASIC uses this space at the top of the memory with

no regard for saving space or reusing space unless it runs out of
space, It keeps a pointer to the next (working from top to bottom)
free space in $81,82), putting any strings it needs (array or not)
there and updating the pointer until it runs out of room. (I.e.,
(81,82)=(7F,80)) To keep from creaming the array tables (the first
thing it would run into), BASIC calls a “garbage collection® routine
that tries to shuffle the strings around to the top of the memory
and reclaim unused space, Unfortunately, there seems to be a bug
in the garbage collection routine that makes it hang up if it has

to try to relocate string arrays. Unless you try to do some fancy
sbring array manipulations in big loops, you probably won't run
‘into trouble. The FRE(x) routine at AFAD calls the garbage collector
before finding out how much room is left between (81,82) and
(7F,80)--in case you wnat to go bug hunting,

NUMERIC VARIABLE REPRESENTATION

The floating point value of a numeric variable is stored in
its four bytes in normalized binary exponential (sclentific)
nototion:

ign and most sig

cexponent sign it least sig bit

100000011 ,00100000 00000000 0000000
S onponent
exponent binary point

‘ . . 3 ‘ ’ i
This would be read as: 1012 X 2,47 = 5,

The last three bytes contain the number, to 24 bits' accuracy.

The first byte is the power of 2--if you like, the number of places
to move the binary point. (The binary point is like the decimal
point, except to itsright we have the %'s column, %'s column,

1/8's colum, etc--instead of 1/10's, 1/100's, etc.)

The most significant bit of the value (bit 7 of byte 2) is always
interpreted as having the value 1. (If it were 0, we could shift
the number to the left (birary point to the right) until i¥ uasg
1, increasing the exponent by as many places as we moved.) Since
this is understood, we can use that actual bit in memory as the
- sign bit. (1 is negative) Negative numbers are not represented
'in 2's complement form. The exponent, however, is, Some examples:

5 10000011 00100000 00000000 00000000
1 10000001 00000000 00000000 00000000
2 10000010 00000000 00000000 00000000
3 10000010 01000000 - 00000000 00000000
b 10000011 00000000 00000000 00000000
7 10000011 01100000 00000000 00000000
15 10000100 01110000 00000000 00000000
-5 10000011 10100000 00000000 00000000

(3/8).37501111111 01000000 00000000 00000000
0 00000000 00000000

00000000

00000000

If you want to explore this further, there follows a short
basic program to read the binary representation of a number
from memory., It looks at the 2ma thru 4th bytes after (7B,7C).
Killing 1line 30 lets you look at the variable name (and the first
two bytes of the value),

Program to look at binary representations of numbers in memory

10 INPUT M
20 P=PEEK(123)+256*PEEK(124)

30 P=p+2

40 FOR J=0 TO 3

50 N=PEEK(P+J)

60 GOSUB 200

70 PRINT * *;

80 NEXT

90 PRINT

©-100 GOTO 10

200 FOR I=0 TO 7

210 B=N AND 2A(7-I)

220 IF B THEN PRINT "1%;:GOTO 240
230 PRINT "O"; '

240 NEXT

250 RETURN

(Yes, lines 210 and 220 are correct.)
- The program waits for you to input a number, then prints the
binary representation of it, and then waits for another number,

MISCELLANEOUS NOTES ON BASIC

Try answering "A" to C/W/M?--A for author.

All final quotation marks are optional unless ambiguity would result,
For example, PRINT "JIM works fine, but INPUT "NAME ; A$ does not.

If you want to embed commas in a line you are typing in response to
en INPUT statement, begin the line with quotation marks. Thie will
also let you enter a line with leading blanks. The same thing also
lets you put commas:or: leading blanks in DATA statements. The closing
quotes are, of course, optional (unless ambiguity would result),

A colon after any response you type to an INPUT statement ends what
the INPUT sees, but lets you make remarks on the screen. For example,
if inresponse to INPUT A% you type JIM:WILLIAMS <{RET? the screen will
show what you typed, but will contain only “JIM*,

Although it is not documented, the statement ON X GOSUB nn,mm,pp,...
works just fine--just the same as an ON X GOTO, but calling subroutines.

Recovery from coldstart is possible if you answer *MEMORY SIZE?" with

a number instead of LRET>. (Once you hit RETURN, BASIC fills the memory
with test bytes until it doesn't get them back to see how much memory
there is. That means your program is completely and irrevocably
overwritten,) The easiest way is to go into the ROM monitor before

you coldstart and find and copy the contents of locations 007B,7C and
0301,02, Then coldstart, entering your memory size (i.e. 4096 for a 4K
machine, etc.) and after BASIC comes up, go back to the monitor and
replace 7B,7C (the end of program/beginning of variables pointer) and
0301,02 (the pointer from the first BASIC statement to the second, which
will be set to zeros by coldstarting--though the rest of the program

is still there). If you have already coldstarted, look for the first
zero byte after loc 0305, and put an address one higher: than that zero.
in 0301,02 (low order byte first; the contents of 0302 will be 03
always, unless you have hand-manufactured a very unusual. BASIC progran,)
The program will now list, but will wipe itself out if you try to run
it, (Variables will overwrite the beginning of the program.) List the
program, immediately use the monitor to find the contents of 00AA,A4B,
and put those contents into 007B,7C. Everything should then be back to
normal, (In fact, immediately after listing any line, locations AA,AB
will contain the address of the pointer of the next BASIC statement--
or gf Ehg ?eginning of variable space if the last line of the program
is listed.) '

Long BASIC lines produce auto carriage return/line feeds when listed.
When saving on tape, this causes the last part of the line to be lost.
By setting the *TERMINAL WIDTH" to longer than any BASIC line with a
POKE 15,255, the damaging carriage return will be avoided.

If you have some program in the machine, but want to look at a program
on a tape without writing over the program already there, the following
"VIEW" program will be useful. It is absolutely relocatable, so may

be put anywhere in memory; it reads tapes and writes only on the screen,
20,07,BF,20,EE,FF,D0,F8,F0,F6. Starting address is first byte.

This won't work on 1P's; the ACIA is in the wrong place.

If you would like to be able to LOAD a BASIC tape and then have it
automatically continue and load a machine language tape with the
‘monitor, here is one way to prepare a tape that does that:

Type:SAVE (RETDPLIST (turn recorder on) {(RET> (stop tape when done)
?"POKE 251,1:POKE 11,67:POKE 12,254:X=USR(X) (restart recorder) (RET)
(stop tape when done). Now put the machine language you want on the
tape. When you 1OAD the tape, it will load the BASIC program, switch
to monitor mode (without clearing screen) and load the last part of the

tape,.

Here's a non-listing program, done by replacing the pointer from line
30 to the next line with a double zero. The program is *found® by
replacing the pointer (lines 10,20.) The last lines of the program
make it invisible again., Added Security may be had by turning off
CTRL C with.a POKE 530,1 after line 30. The first three lines must
be copied exactly as shown, including blanks.

10 POKE 794,32
20 POKE 795,3
30 REM

* program which

* will not
* list
end with

POKE 794,0:POKE 795,0

Here are two quick and dirty utilities. The first is a fast screen
clear in BASIC. It's not as fast as machine language,but much faster
than the traditional FOR I=1T030:?:NEXT. The second is a fast BASIC
machine language dump. It makes a monitor format tape for saving
machine language very nearly as fast as a machine language program
to do the same thing. « ~

10 A=PEEK(129) :B=PEEK(130) 10 SAVE:POKE.15,255

20 POKE 129,255:POKE 130,215 20 Al= (£fil11 in start addr,dec)
30 Ag=n & 65 blanks —> 20 A2= (£i11 end addr, decimal)
. 0 ACIA=64512 (61440 for 1P's)

40 POR I=1 TO 32: A8=A$+" " : NEXT 50 ?F.HHHH/'} (HHHH 4is start addr
50 POKE: 129, A:POKE 130,B 60 FOR A=A1 TO A2 in hex)
70 D=PEEK(A)
80 H=INT(D/16)
90 L=D-16%H

100 IF H)9 THEN H=H+7
110 IF L)9 THEN L=L+7

120 ?CHR$(H+48)CHR$(L+’+8);
120 WAIT ACIA,2

140 POKE ACIA+1,13

150 NEXT

160 ?*.FEGQOG*

BASIC MEMORY MAP
AND POINTERS

FPFR —| IRQ VECTOR (01CO)
PFPC~-—-| BESET VECTOR (BREAK) (FF0O)
FPPA—| NMI VECTOR (0130)
~—{ SAVE RCUTINE
PPP4-—] LOAD ROUTINE
FPFFL-—] CTRL C ROUTINE
FFEE——{ OUTPUT ROUTINE
FPEB—1 INPUT ROUTINE
COLDSTART AND BASIC I/0
FPOO — PROM
MONITOR PROM
PEOO (If you answer M to C?7WM?)
POLLED KEYBOARD PROM
D00 —. 542 and 600 keyboards
FLOPP&PDISC 11P
ACIA
PFCOO BOOTSTRAP
FBOO 1P more BOM 430 board UART
P8O0 1P ROM starts
1 4
FO0O ACIA in iP's
KEYBOARD
DPFOO —
D7FP—
VIDEO MEMORY
{440 board and 1P's end
DOOC — . at D3FPF)
BFFP —1
BASIC BOM
A000 —
POINTERS MORE RAM MAY EXIST HERE
(85,86) =—————>1 STRING top of memory as
STORAGE answered to
"MEMORY SIZE?"
(81,82) =] FREE MEMORY
(7’,80)“‘“’
ARRAY STORAGE
nuneric arrays and names
string array pointers and names
(7D,78) ——my
SINGLE VARIABLE STORAGE
numeric variables and names
string variadble pointers and name
(7B,7C) ~——re—> ___mu_on_a—poim?:ra :nd z:anmes :
NULL double O pointer 4
NULL indicates end of pPEm
RULY
NORMAL BASIC PROGRAM
STORAGE ARFA
(normally
(79,74)———0301)9
(normally 0300) T NULL
MOSTLY UNUSED
some system flags and
PAGE 2 scroll screen routine nesr
bottom
0200 -
6502 STRCK BEX]
01C0 IRQ ROUTINE
PAGE 1 0130 NMI ROUTINE
0100 —
008 IC!
SYSTEM STUFF
input buffer,flags,pointers,
PAGE O BASIC temporary storage
0000 -

MEMORY LOCATIONS CONTAINING THINGS OF INTEREST

000B,C Address of USR routine .

000D Number of extra nulls to be inserted after carriage return
000E Number of characters since last carriage return

000F Terminal width (for auto CRLF) '

0010 Terminal width for comma spaced columns

0013-5A Input buffer ‘)

OogF String variable being processed flag (?)

0061 ?

0064 CTRL O flag (hl bit on = suppress printing)

0065 sometimes contains $68 (??)

to
to
to

0079,7A Pointer
007B,7C Pointer
007D,7E Pointer
007F,80 Pointer
0081,82 Pointer

initial null of BASIC program workspace
beginning of BASIC variable storage space
begimming of BASIC array storage space

to end of array space/beginning of free memory

to end of string space/top of free memory

0085,86 Pointer to top of memory allowed to be used by BASIC
0087,88 Current line number ’

0089,8A Sometimes next line number (?)

008F,90 DATA pointer

0095,96 This is where ADOB leaves address of the variable it found
0097,98 Address of variable to be assigned value by OUTVAR (AFC1)
00AA,AB Points to pointer of next BASIC line after LIST

00AD,AE The contents of this pair is printed in decimal by B962
00AE,AF This is where INVAR (AEO5) leaves its argument

00D1-DZ Clobbered by 0SI Extended Monitor disassembler;kills BASIC
OOEO-E

Apparently unused page zero space

OOE8-FF Apparently unused (by BASIC) page zero space

OOFBE . ROM monitor load flag

00FC ROM monitor contents of current memory location

OOFE,FF Address of current ROM monitor memory location

0130 NMI routine

01CO IRQ routine (can be overwritten by stack being used by BASIC)
0200 Current screen cursor is at D700 + (0200);initialized to (FFEO)
0201 Save character to be printed

0202 Temp storage used by CRT driver

0203 LOAD flag ($80=LOAD from tape)

0205 SAVE flag (0= not SAVE mode)

0206 . Time delay for slowing down CRT driver

0207-0E_Variable execution block-code for screen scroll-not reuseable
0212 CTRL C flag (not O=ignore CTRL C)(reset by RUN)

0213-16 Polled keyboard temporary storage and counter

A000-37 BASIC initial word jump table (in token order; add 1 to each addr)
A038-65 BASIC non-initial word jumps (real entry addresses)

AOB4-163 BASIC keywords in ASCII;hi bit set as delimiter;in token order
A164-86 Error messages with null delimiter :

 BELE

"Written by"* message

{v

ROM BASIC NOTES

Here is what we know so far of the structure of 0SI ROM BASIC
Version 1.0 rev 3.2,

A good place to start exploring is the warmstart entry at A274,
(A1l addresses are hex unless otherwise noted,) BASIC can also be
warmstarted by a jump to loc 0000--where the system puts 4C/74/A2
at coldstart. At this point, BASIC is looking at the keyboard,
waiting for immediate mode commands or BASIC instructions with line
numbers to be entered.

See the warmstart flowchart. BASIC first clears the CTBL ©
flag (LSR $64 clears the flag--the hl bit of loc 64) to allow
-.printing, invokes the message printer (loc 0003 is a jump to the .
printer at A8C3) by the standard convention of pointing A,Y (lo,hi)
at the message (ASCII in RAM or ROM--with last character of a null--
that delimiter tells the rpinter routine to return) and prints
"OK crlf"., (The OK is stored at A192,3) Now the *"fill the input
buffer® routine is called. This routine (at A357) inputs (through
FFEB, from either keyboard or ACIA, depending of the load flag loc
0203, bit 7) characters, keeps a count of them, stores them in
. the imnput buffer at loc 13-5A, handles ®"backspace", @, CTRL 0, and
when it sees a CR, calls A866 to put a null instead of a CR in the
buffer, and print a CRLF with extra nulls from OD. (Nulls are put
in the output stream after CRLF if needed for a slow device by putting
the number of nulls desiged in loc 0D.) There is -also a flowchart
for A357, a main system routine.

There exists a vital routine callable at 00BC (the code for which
is copied at coldstart from BCEE-BDO5 in ROM) that puts the pext
character in the current iine being worked on in the accumulator,
(The current character may be had in A by calling 00C2 instead of BC.)
The BC routine also sets the carry flag if the character being passed
is numeric, for the information of the calling program. The address
of the current character is in loc C3,64--the address portion of
an LDA instruction. Everybody uses BC to find out what's up next.
C3,C4 is constantly be changed by the users of the Bc'routine, in
addition to being incremented by BC each time it is called.

Here, the BC routine is being used to work through the ASCII
in the input buffer as it is being tokenized. C3,C4 1s set to
point at the input buffer. If the first character in the buffer
is numeric, the buffer must contain a numbered line of BASIC source,
s0 we go to A295 to do the "tokenize and store in BASIC workspace,

- updating necessary pointers® job on the input buffer. If the first

 character is not numeric, we call A3A6 to tokénize the line in the

buffer and put it back in the buffer. Then we jump to A5F6, the
main entry to the execute BASIC statements loop.

_ When a program is RUN (from the beginning), A5F6, in executing
the immediate mode command RUN, jumps to the RUN routine at A477,

. which does the following: 1)points C3,C4 to the contents of 79,7A
(the beginning of BASIC workspace)(0301]; 2)resets the string pointer
at 81,82 to the top of memory as recorded in 85,86; 3) resets the
array pointer to the end of the BASIC program (also known as the
beginning of BASIC single variable spase) as kept in 7B,7C. (%This
pointer at 7B,7C is constantly ugdated during BASIC editing and
program entry.); 4) the 6502 stack pointer is reset to (01)FC;

5) a 00 is stored in locs 8C and 61 (why?); 6) a $68 is stored in
“loc 65 (why?). Returning from A477, we jump to A5C2, the top of
the "do the next line of BASIC" loop. See the "Main B&SIC execution
loop® flowchart.

In the main BASIC loop, at A5C2, we first do a CTRL C check,
and stop, printing "BREAK IN LINEWcontents of 87,88) before returning
to warmstart if we find CTRL C, If not, we check to see if the next
character in whatever line we're working on is a null (the beginning
of another BASIC line). If it isn't, it had at least better be a
®:* to indicate multiple statements per line, or we go to the
syntax error printer,'and back to warmstart. If we have a null,
the hi byte of the pointer after it will contain a 00 if we are at
the end of the program, so if we find that, we stop. Otherwise,
it's on tbgthe next line of BASIC, first storéng the number of this
new line in 87,88, and then incrementing C3,C4 past the pointer and
line number. The next sequential 1nstruction in ROM is A5FC, and
we continue executing BASIC statements.

A5FC is the main entry point to the "run the BASIC program'loop.
See its flowchart, It calls BC and checks for a null--and exits
to warmstart if it finds that trivial case, Otherwise it calls AS5FF

to do. the dirty work of executing a BASIC statement before looping
back to the top at A5C2,

ASFF calls BC and checks to see if the first character is
greater than $80, If not, it is not a token, so we must be doing
a LET statement with an implied LET. In this case, we go to A7B9,
. which calls ADOB, a very important subroutine that finds the name
of the vatiable the LET will assign into, finds 1ts address in
variable storage space, puts that address in 95,96, and also returns
with the address in A,Y. A7B9 then checks for an "= (everybody,
of course, using BC to find the next character) (if no "=*, then
syhtax error), calls important routine AAC1, the "evaluate an expression"
routine (with no checking for TM error) and somehow stores the
output value of AAC1 into the address ADOB left. Done with the -~
statement, we return to A5F08, which loops back to the top at A5C2,
(There will be a short quiz on these addresses at the end of the period,)

If ASFF finds a token at the beginning of the line, it first
verifies that it is an initial word token (i.e., less. than:$9C) then
does an ASL, TAY to multiply the token value by 2 to get an offest
for the initial wor& jump table at A000, (Note on tokens: Tokens
are functionally divided into initial words like FOR, RUN,POKE, and
other non-initial words like THEN,=,SQB. There is a subroutine to
handle each initial word, and the addresses of those routines are
stored in a table at A000, two bytes per routine, since it take two
bytes for an address. The addresses are stored in the order of
the token numbers; that is, the first address is for token 80, the
next address (4002,A003) is for token 81, etc, "Initial tokens go
up through 98, For non-initial tokens, some (like SQR) are complex
enough to require their own subroutines, while others (like =) do
not. Tokens 9C through A€ require no subroutines; AD through C3 do.
The first 28ptokens (the initial word ones) take 28%2 bytes in the
table, so the non initial tokens get the addresses starting after
the first 56 bytes of the table, namely at A038. (The 28 and 56 are
decimal,) Ignoring the hi bit of an initial token and multiplying
it by 2 gives the address in the table of the routine for that
token,) (If you think that's hard to follow, it's even rougher to
infer from a disassembled dump of the ROMsi) Anyway, ASFF now has
‘the address of the subroutine that will do the operation of the
BASIC keyword that started the line. It pushes this address onto
" the stack, calls BC (for the convenience of the next routine) and
-an RTS does the actual jump to the needed routine, Again: the
‘address of the routine to do the desired BASIC operation for an
inntial word is pushed onto the stack--like the return address is

’?

for a JSR--and then an RTS makes the processor jump there. This all -
happens around A60D., (Small detail:A5FF JMP's to BC; subroutine BC's
RTS is what actually pops the address off the stack and "returns"
there,) (Another detail: Since the PC is incremented by one after
rorping the return address from the stack, the addresses in the
initial vord part of the jump table are all 1 lower than the routines
actual entry addresses,)

The other, non-initial tokens are dealt with within the initial
word routines, The routines to service the non-initial tokens that
are complex enough to need them are called by the old ASL,TAY trick.
(The ASL is at A827; the TAY at AC55) That offset in the Y-register
is added to an invented base address of 9FDE to find the routine's
address in the jump table.(9FDE + 2#(AD with hi bit ignored)=4038,
the address of the jump for the routine for token AD.)(Phew!)

This jump is not a stack trick; so the addresses in the Jump table
for non-initial tokens are correct as they stand. (They don't have
to have 1 added to get the real address.) The 9FDE+Y stuff is
around ACS6.

INIT DISvd
LN IAXT 0L
dd5V TIVD

(_1sviskavm oz)

JTANTT LxX3aN ON

$FAON WWI
34 ISNW)

(94a6v)

T’

INIT QNY
HIINIOL
ISVd #0°€o
qLvadn

(uvaswavm oz)

804

. 00T NOILNOEXA OISVE NIVK ANV LHVISWHVM

NOIINOAXA OISVE

d001

HOHHHE NS

013 ‘SEIINIOL
Ny aaha 4IVAdN Qv .
oL JHp MOHANOS
ANIT DISVe
JHOLS
yadang
JZINDIOL
(9vEY)
e LOTHINON

HVHO ISHIs

(¢) 88 001
NI 44 Ind

LY o

od TIVO

U344 INdNI
THL TIId O
LSEY TIVD

LN

dTHD ANV
2 d0u_ JINIHJ

ovid
O THLD HVITD

[

(Hdzv
30 0000)
LEVISWEVAM

(D T8IO
1154 OHOE

34406 40
gN¥ IV TINN Ind

[ivito owoa]

{038~X)
BIND HVHD
JNTHIHONT

HIJdNg NI
HVHD JHOLS

(oFE-X)
_EIND. aVHD

INIWTH A

T

(s11g 2 oz ¥svu]
T

(VIOV H0 Qe WOEd INANI

€944 TTVO

1

(D3E-X) EBAINNOD
FAIOVEY p:pmmmm~

ENIINOY »HIZ4Nd THL TIIds

1744 4

C NN)

€0aV X9 gNNod
¥VA 40 EQQV
0L 10VV 40

INdIN0 NDISSV

JA0EV X00TH
NI 3NOQ
NENLIY

wz$ NAHM

TIW s3oq
ANILNOH
NOILYHEHJO DISVH

WHOJHAd TTIM
JVHL INILNOH
0L «NHALIHs
¥_s30gq D€
NI STH ‘4vHD
IXAN SI30 Od

0400 dudf

ROILVEdd0 visva |

INILAOH
NOISSTHIXI~HHL
~-ZIVATYAS HOLVH
ToVY TIVD

S —

£96°66
NI II Ind GNV
‘gqav SII aNid
*gUYN HYA 13D

€0av TIVD

|
(69L4V)

AIITINI
i)

ou

L]

S
(x‘100V) anv
{x‘000V) HSNd

]

(ZxNDIOL)

INITNOH «DISVE 40 ANIT SIKL JINOTXHa 445V

All3
Alla

AllS
All8
AllB
AllE
Al21
Al24
Al27
Al2A
Al2D
Al 30
Al33
Al3S
Al39
Al13C
Al 3F
Al 43
Al 46
AlaAa
Al 4D
Al 50
AlS4
AlS9
AlSF

L23KUP/JUMP TABLES

WARD T3KEN

END
F3R
NEXT
DATA
INPUT
DIM
READ
LET
GaTo
RUN
IF
RESTORE
Gasuz
RETURN
REM
STOP
3N
NULL
WAIT
L3AD
SAVE
DEF
PJKE
PRINT |
CoNT
LIST
CLEAR
NEW

TAB(
T3
FN
SPC¢
THEN
N@T
STEP
+

o

AR YVED -\ *
0 &

SGN

ABS
USR
FRE
Pgs
SQR
RND
LBG
EXP
C3s
SIN
TAN
ATN
PEEK
LEN
STRS
VAL
ASC
CHRS
LEFTS
RIGHTS
MIDS

80
81
82
83
34
85
85
87
83

JUMP
T3

A539+1
A555+1
AAJF+1
A70B+1
A922+1
ADOO+1
A94E+]
ATB3+1}
A6BS+]
AS90+!}
A73B+}
A519+!
AB9B+1
ASES+!]
AT4E+1
AS537+1
A7S5E+1
AGTA+1
B431+1
FFF3+1
FFF6+1}
AFDD+1
B428+1
AB2E+1
AG660+1
A4B4+1
AS8B+1
A460+1

B7D8
B362
B7FS
000A
AFAD
AFCE
BAAC
BBCO
BSBD
SB1B
BBFC
BCO3
BC4C
BC99
B41E
B38C
BO3C
B3BD
B39B
B2FC
B310
B33C
B347

J T8

LacC

AQ00QC
AQ02
A004
AQ06
A003
AOOA
A0QC
ACOE
A010
AQ12
A0l4
ACl6
AQl8
AClA
ACLIC
AQLE
A020
AQ22
A024
AQ28
A028
AQ2A
AD2C
AO2E
AQ30
A032

A034 -

AQ36

A038
AQ3A
A03C
AO3E
A040
AQ42
AD44
AQAaS
AQ48
AO4A
AQ4C
AQ4E
A0S0
A0S52
A0S5S4
A0SS
A0S8
AOS5A
AQSC
AQSE
AQ60
AD62
AD64

R

9

PRINT"BASIC LJ3KUP/JUMP TABLES”
PRINT:PRINT

PRINT “WA@RD . JUuMP
PRINT *Lac WORD TOKEN TO

PRINT

AA= 40960

T=128

F@R A=41092 T2 al200
D=A:GBSUB 1000
PRINTHS" . '3
G35uUB2000

PRINTVS;

ND=2:D=T:GISUB 1005
T=T+!

PRINTTABC14)3HS:
G@SUB3000
PRINTTAB(18)3
PRINTHS;
PRINT"+1";
PRINTTAB(26);

150 D=AA

160 G23sSUBLOOO

170 PRINTHS

180 AA=AA+2

190 NEXT A

195 PRINT

200 FOR A=41201 T2 41236
210 D=A:G25UBL00O

220 PRINTHS:" *3

230 G@SUB 2000

235 PRINTVS:

240 ND=2:D=T:G3SUB100S
242 T=T+|

245 PRINTTABClA);HS
250 NEXT A

260 PRINT

270 FOR A=41237 T2 41315
280 D=A1G2SUBL00O

290 PRINTHS3*" 3

300 G@SUB2000

308 PRINTYS:

310 ND=2:D=T:GASUBLIOOS
315 PRINTTAB(14)3HS;

317

TeT+1

320 G@SUB3000

330 PRINTTAB(18):

340 PRINTHS:

350 PRINTTAB(26);

360 D=AA .
370 G@SUBLI000

380 PRINTHS

390 AA=zAA+2

400 NEXT A

999

END

1000 ND=4

1005 Hs=s""

1010 F2R I= ND-1 TG O STEP =1
1020 H=INT(D/1671)

1030 D=D-Hx1611

1040 IF H>9THENH=H+7

1050 H$=H3+CHPS(48+H)

1060 NEXT

1070 RETURN

2000 ws=""

‘2010 W=PEEK(A)

2020 W$=WE+CHRSCW)

2030 IF W<127 THEN A=A+1:G2T23 2010
2040 RETURN

3000 D=PEEK(AA)

3010 D=D+256%PEEK(AA+1)

3020 G@s5UB1000

3030 RETURN

J T8"
Lac*

R i

M

MISCELLANEOUS ﬁASIC ROM .ROUTINES

These notes do not c¢laim to dbe complete or even error-free,
They are only my hastily scribbled comments on those routines I
happened to come across in my looking at BASIC. .

0000 Warmstart (4C 74 A2) ABE3 Output*?* ,
0003 Message printer (ABC3) ‘6835 g?ggugeggzg in A; update OE; check
00A1 Eﬁﬁéeﬁ“ggdﬂ”fnlﬁﬁfﬂé.put A925 Input routine less clear CTRL 0
00BC Get next char in BASIC line . A946 Output *? *;jump to A357
00C2 Get current char in B line AAC1 Like AAAD w no TM err check
A1A1 Look back thru stack 77?2 ' AAAD g;gslgigitp3€g§£§3: ?ﬁsig’%%?e;
4212 Check for OM and stack does ™M err check -
overflow ABAO Put Oin 5F;get char;goto B887
A24C ®OM* error if numeric ?7?
A2LE Error; caller sets X-reg ABD8 16 bit complement using AE05/AFC1 ?
to error code ABF5 Checks for "o, calls .
A274 Warmstart entry AAC1,checks for ")*
A357 Input and fill buifer; ABFB SN err if next char not *)*
put null at end ABFE SN err if next char not "(*®

A386 Input from FFEB
A399 Toggle CTRL'O flag _
A432 Find BASIC line whose # is

ADOI SN err if next char not ",*
ACO3 SN err ifnext not what's in A

in 11,12; put addr of ptr ACOC SN err printer
of that line in AA,AB " ADOB Get var name from BASIC line; put
A477 Point C3,C4 to 0301;reset ~addr of var in 95,96 and A,Y
str and array ptrs;reset AD53 Expects var name in 93,54; finds
stack to (1)FC;put 0301 in addr of var and put in 95,96 and
8F,90;0 in 8C;0 in 61; AY; 0 in 61
68°1n'C5 (?) AEO5 INVAR puts 15 bit signed value
A491 Clear stack;0in 8C and 61 in AE,AF
AS5C2 Top of maln BASIC exec loop AE85 BS error
A5FC Entry to BASIC execute loop AE88 FC error
ASFF Do line of BASIC AFC1 OUTVAR 0 in 5F;(A)in AE; (Y) in AF;
A629 Jmp FFF1 for CTRL C then to ?
A636 CTRL C entry point BOAE Msg printer (A8C3)
A67B Set null count at DO (7) . B3AE Put 8 bit arg f:°m line in AE,AF
A77F Get dec # from buffer; B3F3 (BA,BB) to C3,C
put value in 11,12 _ . BUDO Arith to normalize FP arg??
AB66 Put null at end of buffer; B887 Check for +,~,$,#,.,E... long!
CRLF;nulls

0 B95A Prints current line #
(ABEC CRLF w/ nulls from OD . B962 Prints contents of AD,AE (as dec)
A8C3 Msg printer; A,Y point to

msg, which ends w/ null BD11 Coldstart

BEE4 UART input routine
ABEO Output * * (51883 chip at FBOX)

BEF3 UART output routine
BEFE UART initialization

BFO7 ACIA input (6850 chip
at PCOX-like CII-4p)

BF15 ACIA output routine
BF22 ACIA initialization
BF2D CRT driver

<

00BC

00c2
A477

A925

AAC1

ABF 5~

ADOB

B3AE

B962

VERY USEFUL BASIC ROUTINES -

Works its way through a line of BASIC (or whatever C3,C4 points to)
and gets the next char each time it is called., It will be pointing
to the end of your USR statement if you call it from the USR; you
can then use it to get stuff after X=USR(Y)--and BASIC will never
be the wiser! BC leaves carry set if character is numeric.

Entry to the BC routine without incrementing C3,C4 bvefore gettiné
the character. Thus it gets the current character,

Call this routine and then jump to A5C2 and you'll be RUNning
the current BASIC program--starting from machine Tanguage!

Call this from a USR statement and you will be doing an INPUT
statement--but BASIC will not echo the characters you type in--
including the CRLF at the end. This gives you a real BASIC INPUT
statement that doesn't screw up your nice graphics by scrolling
the ecreen one line! You must set loc 64 to $80 (set the CTRL O
flag) before this all works, Do an LSR $64 to clear the flag to
normal if you want BASIC print statements to work again,

Like AAAD but no type mismatch check.

One you've been waiting for. This gets a 16 bit argument from

the current BASIC line position (yes, like right after the ")®

of your USR statement!), evaluating whatever expressions it finds,
and leaves it where a.call.to AEO5 will find it and put it in
AE,AF! (Use ACO1 to find a comma and then call AAAD again to get
another value!)

ACOC This series of routines (actually of entry points to one routine)
uses the BC routine to check for various delimiters. If you disassemble
the ROM here, it demonstrates a classic use of the 2C opcode as a
combination NOP and immediate load, depending on where you jump in.
ABFB checks for “)"; ABFE for "("; ACO1 for ¥",%; ACO3 for whatever
character you leave in A when you call it. ABF5 checks for u(w,

calls AAC1 to get a value, then checks for)", (Thoughts of a

BASIC statement X=USR(Y)(Z) should be jumping into your head

about. now.)

This routine uses the BC routine to find the name of the variable
that's next in the BASIC line, and puts the address of the variable
in locs 95,96, It also leaves the address in A,Y. If you store

A in 97 and Y in 98, you can call OUTVAR (AFC1) to store whatever
16 bit value you put in A and Y into that BASIC variable.

This is like AAC1, but gives an error if the value is greater
than 255, . (Used by the POKE routine to keep you from putting a
too-big number in memory.)

Prints the decimal value of whatever 16 bit number is in AD,AE
at the current cursor location on the screen, with normal BASIC
checks for line length (does auto CRLF if line is too long) etc.

