
On the 6502A brilliant or sloppy design?Jesús AriasMarh 28, 2011Contents1 Introdution 12 Hardware �aws, trade-o�s, bugs... 22.1 Lak of 3-state address bus . 22.2 Dummy Reads . 22.3 Dummy Writes . 22.4 Dummy Fethes . 32.5 Inomplete deoding logi. 32.6 Interrupts & Reset . 42.6.1 The B �ag . 42.6.2 The BRK op-ode ($00) . 52.6.3 Lost BRKs . 62.6.4 No instrution between interrupts . 62.7 BCD arithmeti . 63 Instrution set 73.1 Useless addressing modes . 73.2 Missing useful instrutions . 74 Busting myths 94.1 6502 vs Z80 speed omparison . 104.1.1 6502 test ode . 104.1.2 Z80 test ode . 134.1.3 Compiled ode . 154.1.4 Comparing results . 164.2 Interrupt lateny . 175 RISC vs CISC 185.1 The BN16 proessor . 195.1.1 BN16 test ode . 215.2 Comparison results . 241 IntrodutionThe 6502 was a very popular CPU during the 8-bit raze 30 years ago. It is still being used as a heap orein the embedded market, mainly in its 16-bit inarnation: the 65816, but it is not widely known as it wasdeades ago. It still has many enthusiasts doing projets with it. It has been implemented as a VHDL orVerilog ore many times. Several TTL CPUs had been designed using the same instrution set as the 6502,et, et, et. The 6502 is a very interesting CPU due to its simpliity: few registers, few instrutions, fewtransistors. It is a logial introdutory example for omputer design. And it is also interesting due to the1

prominent role it played during the development of the early personal omputer, with many lassi mahinesrunning on it.But, on the other hand, some of these enthusiast seems to have been so foused on it that they think itis the Holy Grail of omputing, while, the 6502 is also well known for its many bugs, limitations, and weirdbehavior. In this doument I'm mainly playing the Devil's Advoate against the 6502, exposing its not sobrilliant aspets. I don't want to redue the merit of their designers. They did a magni�ent job, but theirbig goal was to design the heapest possible CPU in the World, not the fastest, nor the leanest, nor themost robust. What gave the 6502 its plae in the omputing history was its low prie. We mustn't forgetthat.This doument inludes the knowledge I olleted from my own experimentation with a 6502 prototypeI build about one year ago along with that available on Internet resoures. In some oasions I'm presentingdiagrams inferred from known fats, but not aurate in the striter way. There are also some personal viewsthat an be shared or not, speially those related with the instrution set of the proessor.The doument begins with some hardware related issues of the 6502, ontinues disussing the limitationsof its instrution set, then, a performane omparison between the 6502 and its main ompetitor, the Z80,is presented, and, �nally the 6502 and a RISC pu design are ompared.2 Hardware �aws, trade-o�s, bugs...The 6502 as it was originally released inluded lots of �aws and bugs [4℄. Many of these problems wereorreted in the CMOS version, the 65C02. But the improved version ame to the market too late andalmost all 6502 systems were designed around the NMOS hip with all its problems. It is quite sure thatthe designers were aware of some of these problems before the �rst hip went out of the fatory line. Somewere the result of design trade-o�s when reduing the hardware omplexity, while others weren't just takenseriously. None of them was onsidered of enough importane for a design revision, so, all NMOS 6502exhibit them.Here are some examples of odd hardware behavior or just missing expeted funtionality.2.1 Lak of 3-state address busThe original 6502 ame without the possibility of disabling its address output drivers, and, therefore, itbeame a nuisane for the designers of systems with any sort of DMA. This feature an be added externally,using 74LS244 3-state drivers, but any other CPU on the market gives you this possibility for free.The fat is that inluding a 3-state apability to the address bus requires only a negligible amount ofhardware inside the hip, and there are many unused pins in the pakage, so, I don't see the reason for notinluding it. In fat, a follower hip, the 6510, inluded a 3-state address bus, probably due to ustomerdemands (and ustomers were Atari and Commodore, not you or me).2.2 Dummy ReadsThe 6502 also laks an output to validate the R/W signal: some sort or VMA or MEMRQ pin. As aonsequene all lok yles are memory aesses, either reads or writes, but, there are some yles whenthe CPU is doing internal proessing and the value on the data bus is irrelevant. Most of these yles aredummy reads.Lets onsider for instane the RTS instrution whose timing diagram [2℄ is shown in Figure 1. Beforeretrieving the return address from the stak the stak pointer has to be inremented. During this ylea dummy read is performed. The same happens at the end of the instrution when the PC has to beinremented. The RTS instrution does two dummy reads (and one dummy feth, disussed later).Dummy reads aren't wasted time. This time is needed for internal proessing anyway. Their only impatis on memory sharing systems and in the total power onsumption due to extra memory ativity.2.3 Dummy WritesSome instrutions an also have dummy writes. This happens with all Read-Modify-Write instrutions likeINC zp. In these instrutions the data from memory is read, written to the same address unmodi�ed and,2

$400PC return address $500xx

$FF

$04

$400 $401 $500

$60 $FFxx $04 xx

RTS
instr.

previous
instr.
next

$1F0 $1F1 $1F2

LDA #

$A9 $05

$501
Addr.
bus

bus
Data

PROGRAMSTACK

xx

$100,S $1F0

$1F1

$1F2

SYNC

Read PCL Read PCH

+ other

Fetch

operand

Dummy
Fetch

Dummy
Read

Dummy
Read

(not needed)

processing
(if possible)

Fetch

operand

incr. S incr. S

Fetch Fetch

Op−codeOp−code

incr. PC

$4FF

$60
RTS

$A9

xx $05$501$401

Figure 1: Detailed timing for the RTS instrution (inferred from available data).�nally, written to the same address modi�ed [2℄. The �rst write yle is, thus, a dummy write. As withdummy reads, dummy writes aren't wasted time, just unneessary memory bandwidth.2.4 Dummy FethesDummy fethes happens when a single byte instrution is exeuted. After reading the op-ode at PC address,a seond read is performed at PC+1. This seond read retrieves the �rst byte of the operands for multi-byteinstrutions, but, for single-byte instrutions it is unneeded, and therefore, it is wasted time.Thanks to dummy fethes all instrutions have the same �rst yle. This an, surely, help in reduing theomplexity of the CPU sequener at the expense of some proessing speed penalty. The 6502 was designedto be heap and hardware simpliity was more valuable than speed. This speed penalty is also disussed insetion 4.1.4 where it was found to be of little importane (about 10% slower).Dummy fethes an explain why after a SYNC yle the address on the bus is always inremented, withhardware interrupts being the only exeptions to this rule.2.5 Inomplete deoding logi.The 6502 sequener diagram is shown in Figure 2. This diagram was obtained from data available from [3℄ andthe transistor-level shemati from [1℄. It is basially a seven-bit shift register with a �walking one� drivingthe AND-plane of a half PLA, the OR-plane of the PLA being replaed with random logi. PLA is not avery onvenient name beause the array onnetions aren't programmable: a onnetion is made by plaing atransistor in the array during the design of the hip. The 6502 sequener is therefore ompletely hardwired.The shift register is used for ounting the instrution yles in plae of a more onventional ounter anddeoder. The shift register is not the only input to the PLA, other bits ome from the instrution register(the register where the op-ode of the urrent instrution is stored). The PLA AND-plane outputs are theBoolean produts of any desired ombination of inputs, but not all ombinations an �t in the PLA. In thisrespet the PLA di�ers from an ordinary ROM. The PLA was therefore programmed to deode only thedoumented op-odes of the 6502 and no more than that. As undoumented op-odes were supposed to be�don't are� ases in the Boolean equations of the PLA, the size of the PLA was redued to a minimum.3

Q0
Q1
Q2
Q3
Q4
Q5
Q6

SDRES

Q0

Q1

Q2

Q3

Q4

Q5

Q7

Q6

CLR

D0
D1
D2
D3
D4
D5
D6
D7

State

force

Instruction
register

Reset SYNC

counter
(shift register)

output
unused

bus

Data

from

BRK

fetch operand

fetch op−code

Product−term inputs

21−input, 130−output, PLA AND plane

programmable
connections

(OR plane)

Random Logic

Control signals

n

Figure 2: Inferred blok diagram of the 6502 sequener. (The programmable onnetion loations does notorrespond to the atual ones).Unfortunately, this design strategy also led to weird behavior when undoumented op-odes are exeuted.Most of them exeute useless operations. Some of them have variable e�ets beause of bus ontentions insidethe CPU, and a few of them have the surprisingly e�et of stopping the CPU ompletely. These later op-odesare, jokingly alled, the KIL instrutions.A KIL op-ode basially don't get the SYNC output ative for any of the 7 lok yles it takes for the�walking one� to get out of the shift register. After this happens the shift register is ompletely �lled withzeroes and the proessor is dead. Only a RESET an get the 6502 into an operational state again.This �aw ould be related to pipelining, a novel onept applied to miroproessors at the time of the6502 design. The idea is to do the op-ode feth of the new instrution in parallel with the last exeutionyle of the urrent instrution, if possible. A onvenient way of arranging this is to atually do the op-odefeth during the last yle of the urrent instrution along with its last proessing step. So, the SYNC signal(op-ode feth) is ativated from one of the outputs of the sequener instead of the state ounter. If theurrent op-ode fails to ativate the SYNC signal it beomes a KIL.All KIL op-odes have the bit 1 set (for instane op-ode = $02). This is surely related to the fat thatone output from the instrution register is not onneted to the PLA (bit 1, of ourse).The KIL op-odes seems to be losely related to the Halt and Cath Fire, HCF, instrution of the 6800CPU. But, as long as I know, these op-odes were intended as a fatory test, so, they were intentional. TheHCF stops exeuting instrutions and keeps the address bus ounting, turning the 6800 CPU into no morethan an expensive binary ounter.2.6 Interrupts & Reset2.6.1 The B �agOne of the most bizarre things about the 6502 is the behavior of its Break �ag. A �PHP, PLA� sequenealways reads it as �1�, but it is pushed as �0� into the stak when a hardware interrupts happens. The4

V

N

D

I

Z

C

In
te

rn
al

 b
us

detNMI

IRQ
B

res.

rd_P

6

7

5

4

3

2

1

0

Figure 3: Funtional shemati of the status register of the 6502 CPUshemati of Figure 3 helps to understand this behavior: First, there is no storage for this �ag. It is justthe validated interrupt line. During normal program exeution it is always read as �1� beause a �0� willinterrupt the program before the atual read. When an interrupt is exeuted the �ag register is read withthe B �ag as �0� and pushed into the stak. Before jumping to the interrupt vetor the I �ag is set and theNMI edge detetor is reset, so, when the exeution ontinues the B �ag is one again.2.6.2 The BRK op-ode ($00)The BRK op-ode an be fethed into the instrution register beause of four di�erent possible events:1. The program ontains a BRK instrution and it is fethed like any other op-ode.2. The IRQ input goes low and the I �ag is reset.3. A falling edge in the NMI input happens.4. The CPU is reset.The instrution register an be leared instead of fething the urrent op-ode when an interrupt or resethappens, e�etively onverting the fethed op-ode into a BRK (see Figure 2). But, then, the exeution ofthe BRK instrution di�ers depending on the ause of the BRK in the following ways:
• A software BRK lets the PC to be inremented two times before pushing it into the stak, pushesthe �ags register (with B as �1�), and, �nally, reads the new PC value from the addresses $FFFE and$FFFF.
• An IRQ interrupt pushes the PC and the �ags register with B as �0�, but it does not inrement thePC, allowing the interrupted op-ode to be fethed again after RTI. The new PC value is read fromthe addresses $FFFE and $FFFF.
• An NMI interrupt does the same as the IRQ interrupt but the PC is read from addresses $FFFA and$FFFB.
• The Reset is very interesting. The stak pointer is deremented by 3, like if three values were beingpushed into the stak, but nothing gets written into the memory. In fat, the BRK instrution triesto push the PC and the �ags register, but the R/W line is fored high and the three write yles areturned into dummy reads. It, �nally, reads the new PC value from addresses $FFFC and $FFFD.So, the BRK instrution gets a lot of di�erent uses, with the software BRK being the least priority todesigners. Its behavior is modi�ed with a few gates that an inhibit the normal PC inrement or memory5

write. The internal buses are preharged high, and if nothing pulls their lines low they will be read as allones. To generate the three di�erent addresses for the vetors only three pull-down transistors are needed(for bits 0, 1, and 2). A lot of funtionality is ahieved with only a few transistors. Compare this to theburden of the 8080 ase where the external interrupt soure has to put an op-ode into the data bus.2.6.3 Lost BRKsThe BRK instrution is like a �xed address subroutine all. The only notieable remark being the fat thatit is atually a two-byte instrution. The seond byte is not used by the proessor, but it an be retrievedfrom the program memory by the BRK handler routine and it an get a user-de�ned meaning. It is temptingto use the BRK as a system all, but beware: the 6502 has an important bug regarding the BRK instrution[4℄. Interrupts are exeuted by turning the urrently fethed op-ode into a BRK. But, when the interruptedinstrution is also a BRK the PC inrements like for a software BRK but the B �ag is pushed as �0� like fora hardware interrupt. As a onsequene, the BRK handler is exeuted for a hardware interrupt, and, whenthe RTI instrution is exeuted, the next instrution fethed is that after the BRK. The BRK instrution istherefore skipped, like if it was removed from the normal program �ow.2.6.4 No instrution between interruptsThe IRQ handler routine has to take the neessary steps in order to deativate the IRQ line before returningto the interrupted ode with an RTI instrution. If the IRQ line is still low when the RTI is exeuted anew interrupt will happen just at the end of the RTI exeution. Not a single instrution of the interruptedprogram is exeuted in this ase. This di�ers from the behavior of other proessors where one instrution ofthe interrupted program gets exeuted between interrupts, a trik often exploited by debuggers to implementa single-step exeution. In the 6502 ase other solutions have to be found, like, for example, triggering anIRQ just after the feth yles of the exeuted instrution by using a arefully set timer (if your systeminludes a 6522 VIA this is possibly the simplest solution).2.7 BCD arithmeti

Accumulator

In
te

rn
al

 d
at

a
bu

s ALU

H
al

f−
ca

rr
y

ca
rr

y

adjust

BCD

Flag
to Zero

from
D flag

enable

Figure 4: Detail of the BCD orretion blok and its plaement in the 6502 datapath.The 6502 is able do perform arithmeti using BCD values. Instead of using a BCD adjusting instrutionlike many other proessors (namely DAA on Intel's or Z80), the mode of operation is seleted by the deimal�ag in the status register. If the D �ag is one the ADC and SBC instrutions operate in BCD mode. For theADC instrution this involves dividing the 8-bit data into two 4-bit BCD digits and to add 6 to the nibbleswhose value exeeds 9, a ondition that requires one arry output for eah 4-bit digit of the ALU. The BCD6

adjust are two simple 4-bit adders that an add 6, 9 (for SBC) or 0 to eah digit depending on their ontrolinputs. The Figure 4 shows a diagram of the ALU, BCD adjust logi, aumulator, and the way they areinteronneted.When operating in deimal mode the N and V �ags doesn't make sense, but the Z �ag is also invalid.That's odd, beause the Z �ag an have an useful role also for BCD values, but, the real 6502 an have theZ �ag set when the result is $66 in deimal mode.This �aw is easily explained by looking at the diagram of Figure 4. The Z �ag is omputed as the 8-bitNOR funtion of all the bits of the internal data bus, not the aumulator inputs. Thus, an ative Z �ag istelling us that the output of the ALU is zero but the BCD adjust logi an have added some non-zero valueto this result. It seems that the Z �ag omputation is done in the wrong plae. But, that plae was seletedbeause there are instrutions that an hange the Z �ag without having the ALU nor the aumulatorinvolved (for instane LDX).So, it looks that the 6502 designers didn't want to have the Z �ag orret. Doing this would have requiredanother 8-input NOR gate plaed on the aumulator inputs and the Z �ag soure swithed depending if theaumulator is the destination or not. This doesn't look like muh extra hardware, but the designers wentthe easy way: delaring the Z �ag invalid when in deimal mode. It seems that they had little regard forthis mode, maybe beause it was a last hour marketing deision to boost sales by o�ering something more.In my opinion the BCD mode has little or no pratial use, and, by the way, the developers of Commodoreshould have had the same opinion beause they forgot to lear the D �ag in the IRQ handler routine of theC64 [4℄ :) Modern CPUs no longer have BCD support, further supporting this opinion.3 Instrution setThe 6502 got an �spartan� instrution set that made things a little di�ult for programmers. This instrutionset was inreased in the 65C02 with muh needed instrutions. As always happens with instrution setupgrades, appliations usually target the smaller instrution set in order to run on all possible CPUs, and, asa onsequene, improvements aren't used in most of the atual ode. This is partiularly true for the 6502:Almost all systems were based on the NMOS 6502 and only a negligible amount of ode was optimized forthe newer CMOS version.Both the oddities of the 6502 instrutions and their addressing modes are presented in the following text.3.1 Useless addressing modesThe 6502 fans are proud of the many addressing modes it provides to programmers. But, some of themhave little or no pratial use. The ZP,X and ZP,Y are seldom used beause arrays aren't plaed on zeropage very often. The zero page area is muh valued for program and system variables, and, usually, there isno spae left for arrays. Also, these addressing modes are partiular ases of the more general ABS,X andABS,Y modes that are what usually get used.The (IND,X) mode is a lear ase of nonsense. It addresses an array of pointers in the zero-page. Afterwriting thousands of assembler-ode lines I never found the opportunity of using it. In my opinion it is notonly useless, but a lassial example of the CISC weakness: A piee of hardware inside the CPU whih israrely used. On the other hand the (IND),Y mode is used very often. In many oasions I missed a similar(IND),X mode. That would have been muh more pratial.3.2 Missing useful instrutionsThe instrution set of the 6502 has few instrutions (56), with almost all of them being regularly used inthe programs. Due to this some people like to name the 6502 as the ��rst RISC�. The meaning of the termRISC is usually understood to be something more than just a redued set of instrutions. It implies a largeset of registers, a load-store arhiteture and a deep instrution pipeline. None of these harateristis arefound in the 6502, but, indeed, its instrution set is redued, maybe too muh. In many oasions theprogrammers have to resort to triks, workarounds, or just extra instrutions to do simple operations thatin other proessors are done with single instrutions. Some examples of the 6502 instrution set peuliaritiesfollows: 7

No ADD, SUBIn the 6502 all additions and subtrations inlude the arry, so, before doing a simple addition you must besure the arry �ag is leared. This involves another instrution (CLC). The same goes for the subtration,but in this ase the arry has to be set with SEC before exeuting SBC. I must reognize it is better to haveonly the addition with arry than having only the addition (this later being a serious �aw for the PIC familyof miroontrollers), but, setting the arry before ADC/SUB is a nuisane that makes the ode longer andslower. The ADD and SUB instrutions would require the ability to fore the arry input to the ALU to zeroor one, respetively. But this is already done for omparisons, onditional branhes and indexed addressingmodes, so, the datapath hardware is already there. Only the instrution deoding is missing.No omparison with arryWhile the addition and subtration always inludes the arry, the omparison instrution, CMP, does not.Therefore, when omparing 16 or 32-bit values, the programmer has to resort to the SBC instrution. Butthat instrution modi�es the aumulator. A omparison with arry, CPC, would not have this problem.No INC A, DEC AIn the 6502 when the aumulator has to be inremented or deremented the ADC or SBC instrutions haveto be used together with the burden of setting the arry �ag properly. This makes the ode longer, slower,and the arry �ag value is lost. The newer 65C02 inludes these instrutions at last.No PHX, PHY, PLX, PLYIn the NMOS 6502 these instrutions were missing. They were added later in the CMOS version. Theyare really useful: Not only they save ode and time. They also allows you to preserve the value in theaumulator when saving the X and/or Y registers. As an example onsider the following: all registers mustbe saved before alling a subroutine and then restored. The value in the aumulator has to be preservedfor the alled routine. We want to do this without modifying any variable in the zero-page or any statialloated memory:6502 ode : 65C02 ode :pha ; save r e g i s t e r s pha ; save r e g i s t e r stxa phxpha phytya j s r bitbang_outpha ply ; r e s t o r e r e g i s t e r st sx ; r e l oad A from stak plxinx p lainx r t s ; r e turninxlda $100 , xj s r bitbang_outp la ; r e s t o r e r e g i s t e r stayp lataxp lar t s ; r e turnToo few addressing modes for BITThe BIT instrution only have the ZP and ABS addressing modes. That's a pity beause it ould be usefulfor testing the ontents of memory without losing the value in the aumulator. With this limitation it is only8

useful for testing �xed memory addresses like I/O registers. Again, in the 65C02 there are more addressingmodes in general and for the BIT instrution in partiular.No JSR (IND)The instrution set inludes a JMP (IND) but not a JSR (IND). Therefore, when alling a vetorized routinewe must all a trampoline routine �rst:. . .j s r i n d a l l. . .i n d a l l : ; Trampoline rout inejmp (ve to r)This approah results in a longer and slower ode than doing a JSR (IND). By the way, the JMP (IND)instrution is buggy and are must be taken to ensure your vetor does not ross a page [4℄. This is not abig problem if variables are properly aligned.�Volatile� Z and N �agsAlmost every instrution modify the Z and N �ags, with load instrutions being a notable ase. This savesinstrutions for testing data for zero or sign in the ode, but, on the other hand, you must do your programbifuration just after these �ags are valid or almost any other ode will hange them. Other CPUs havefewer �ag-hanging instrutions and you an insert ode between omparisons and onditional jumps. Thisfeature also plays a role in the invalid Z �ag in deimal mode (see subsetion 2.7)Values ontrary to what is normally expetedThe arry �ag has to be set before SBC or an additional one is subtrated. After SBC the arry �ag isset if the result is zero or positive. That is: if the minuend is bigger or equal than the subtrahend. Mostother CPUs have the opposite values for their arry �ag when doing subtrations, with the arry ating asa �borrow� bit.The I �ag is the IRQ mask. It means that hardware interrupts are masked (or inhibited) when the I �agis set. Therefore, the CLI instrution allows interrupts to happen while SEI disables the interrupts. TheCLI mnemoni is found in many other proessors with the opposite meaning.4 Busting mythsThere are two basi myths about the 6502 that deserve some analysis. The �rst is that, as it uses less lokyles per instrution, the 6502 is faster than other simmilar CPUs. In order to disprove this I hoose theZ80 as the CPU to ompare the 6502 with. The 6502 and the Z80 have more in ommon than it is usuallythough. Both were designed by people who resigned from their former ompanies after being fed up withtheir dilbertian bosses. They ompleted their respetives designs on small ompanies, ontended with theirformer employers in the market, and won. The 6502 and Z80 wiped the 6800 and 8080 out of the 8-bitmarket. They were very suessful during that era, but both were unable to evolve into ompetitive 16 or 32bits designs. The Z80 takes 3 lok yles to perform a memory read while the 6502 does the same in justone lok yle. But what this really means is that a memory hip that is just fast enough for a 1 MHz 6502is equally good for a 3 MHz Z80, and, therefore, Z80 systems were usually running with faster loks thanthose based on the 6502. What we have to ompare is time, measured in seonds or miroseonds, insteadof lok yles.The other myth I want to address is that of the interrupt lateny. It is usually said that the 6502 has avery short interrupt lateny, but this doesn't take into aount the overhead in the interrupt routine itself.Again, I will ompare the 6502 interrupt against that of its main ompetitor, the Z80.
9

4.1 6502 vs Z80 speed omparisonDuring the eighties the 8-bit personal omputer market was �lled with lots of inompatible omputer models.Most of them were powered by the Z80 or 6502 CPUs. Only a small fration of models relied on otherproessors, like the 6809. The battle was, thus, served. Z80 and 6502 users were eager to onvine eah otherabout the error they made by hoosing the opposite CPU. I was also involved in those arguments at thattime, and my position was on the Z80 side. Now, many years later, I think I got a more balaned opinion.I'll try to make an objetive omparison about the performane of these two proessors.Comparing �apples� and orangesThis is a never ending debate. There are always some piees of ode better suited for any partiular CPUarhiteture and benhmarks tends to be biased. For instane, the Z80 will beat any ontemporary CPUwhen moving data in the memory thanks to its LDIR instrution, but the 6502 an be a winner when doingBCD arithmeti. 6502 fans argue that their CPU uses less lok yles per instrution than the Z80, but thelater usually ran on faster loks. Also, the Z80 inludes more �useful� instrutions in its set, meaning thatless instrutions are required for a partiular proessing task. So, what we should ompare? The benhmarkmust be neutral in the sense that neither CPU an take advantage of their spei� features. But, this alsoan be onsidered unfair beause a good programmer would use those features whenever possible to get afaster ode. It would be a better idea to resort to a real-life appliation for the benhmark, but, it is not easyto �nd the same appliation ported to these very di�erent arhitetures. And what has to be its soure ode?A high level language an give di�erent results depending on the ompiler or interpreter used. Therefore,what I'm trying to do �rst is to ode a partiular appliation in assembler language for both proessors,and I'll try to do my best to redue the ode size and exeution time to a minimum in both ases. Theappliation has to be simple, beause of the work it would require otherwise, but not too simple or it willnot be a representative ase. I settled for the following:A Eratosthenes sieve to ompute prime numbers between 2 and 2048. It will require 256 bytes of data tohold a �ompressed� sieve and, therefore, single bit, multi-byte addressing is involved. The size of the sieveallows for an e�ient addressing in the 6502 ase, but it does not matter for the Z80 ode. Both proessorswill have to deal with 16-bit arithmeti, bit manipulation, binary to ASCII onversion and memory �lling.I/O an be very system dependent and, while used to test the orretness of the results, will be removed forthe �nal speed test: the dummy harater printing routine will only ontribute with its all and return delayto the total exeution time. When the output is printed the following is obtained:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433. .1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 19511973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039The exeution time will be measured by exeuting the ode in an emulator and looking at the yle ount.But, what lok frequeny should we use for the emulated proessors? First, we will take a look to the 8-bitmahine survey from Table 1 whose data was mainly olleted from Wikipedia [5℄. It looks lear that 6502systems were running at lower lok frequenies, most of them at around 1 MHz, while Z80s were lose to 4MHz. In the following omparison we will use the average frequenies from the table, namely 1.305 MHz forthe 6502 and 3.751 MHz for the Z80.4.1.1 6502 test odeThe soure ode for the 6502 test follows.
∗=0tmp1 : ∗=∗+1 10

System CPU Clok (MHz) System CPU Clok (MHz)Apple IIe 6502 1.023 ZX Spetrum Z80 3.5Commodore 64 6510 1.023 Amstrad CPC Z80 4Commodore PET 6502 1 Spetravideo 328 Z80 3.6Commodore VIC20 6502 1.023 Grundy New Brain Z80 4Commodore 128 8502 2 Commodore 128 Z80 4Atari 2600 6507 1.19 Sony Hit Bit 75 (MSX) Z80 3.58Atari 800XL 6510 1.79 VTeh Laser 200 Z80 3.57Ori Atmos 6502 1 Jupiter Ae Z80 3.25BBC miro 6502 2 Tatung Einstein Z80 4Aorn Atom 6502 1 DEC Rainbow 100 Z80 4.012Average 1.305 Average 3.751Table 1: 8-bit system lok rate and CPU surveytmp2 : ∗=∗+1number : ∗=∗+2index : ∗=∗+2
∗=$e000d i r exe : ldy #0 ; Mark a l l numbers as primes to beginlda #$ f fl 1 : s t a array , yinybne l 1s ty number+1 ; s t a r t with number=2lda #2s ta numbermbu : lda number ; hek i f primes ta tmp1lda number+1s ta tmp2l s r tmp2 ; y = number /8ro r tmp1l s r tmp2ro r tmp1l s r tmp2ro r tmp1ldy tmp1lda number ; A = 1<<(number&7)and #7taxlda #1px #0beq l 3l 2 : a s ldexbne l 2 11

l 3 : and array , y ; hek b i tbne l 35 ; not primejmp nxn; number i s prime . p r i n t i tl 35 : lda numbers ta tmp1lda number+1s ta tmp2; tmp1−tmp2 : data to be pr in t edldy #0prn1 : ;−−−−−−−−−−−−− d iv ide tmp1−tmp2 by 10 . Remainder r e s u l t in Aldx #16lda #0dv1 : a s l tmp1r o l tmp2r o lmp #10b dv2sb #10in tmp1dv2 : dexbne dv1;−−−−−−−−−−−−− l ad # '0 'phainylda tmp1ora tmp2bne prn1;−−−−−−−−−−−−−prn2 : p laj s r outdeybne prn2lda #10j s r out;−−−−−−−−−−−−−−− Now, mark every mu l t ip l e o f number as not primelda number ; index=numbers ta indexlda number+1s ta index+1bu2 : l ; index+=numberlda indexad numbers ta indexs ta tmp1lda index+1ad number+1s ta index+1s ta tmp2lda #8 ; i f (index>=$800) breakmp index+1 12

b nxnl s r tmp2 ; y = index /8ro r tmp1l s r tmp2ro r tmp1l s r tmp2ro r tmp1ldy tmp1lda index ; A = ~(1<<(number&7))and #7taxlda #1px #0beq l 7l 6 : a s ldexbne l 6l 7 : eor #$ f fand array , y ; mark the b i ts ta array , yjmp bu2nxn : in number ; number++bne l 5in number+1l 5 : lda number+1 ; i f (number&0x7 f f)!=0 ont inuemp #8beq theendjmp mbutheend : r t sout : r t s ; dummy hara t e r output rout inearray=$300 ; 256 byte arrayThis ode was run on an emulator modi�ed form the Marat Fayzullin & Alex Krasivsky ode. Theemulator keep trak of the total number of yles, number of instrutions exeuted and number of dummyfethes.4.1.2 Z80 test odeThe soure ode for the Z80 test follows.; DE: number; HL: indexorg 0x0ld hl , array ;Mark a l l numbers as primes to beginld de , array+1 13

ld b ,255ld a , 0 x f fld (h l) , al d i rld de , 2 ; s t a r t with number=2mbu : ld h , dld l , es r l h ; l=number /8r r ls r l hr r ls r l hr r lld b , arrayadd hl , bld a , e ; A = 1<<(number&7)and 7ld b , ald a , 1j r z , l 2l 1 : s l a adjnz l 1l 2 : and (h l) ; hek b i tj r z , nxp;−−−−−−−−−−−−− number i s prime −−−−−−−−−;−−−−− p r i n t i t −−−−−ld h , dld l , e;−−−−−−−−−−−−− d iv ide HL by 10 . Remainder r e s u l t in Ald , 0prn1 : xor ald b ,16dv1 : s l a lr l hr l ap 10j r , dv2sub 10in ldv2 : djnz dv1add a , 0 x30 ; onvert to ASCII d i g i tpush a fin ld a , hor lj r nz , prn1ld b , prn2 : pop a f a l l outdjnz prn2 14

ld a , 32 ; spae a l l out;−−−−−−−−−−−−−−− Now, mark every mu l t ip l e o f number as not primeld h , dld l , ebu2 : add hl , de;−−−−−− i f (HL>=$800) breakld a , hp 0x8j r n , nxppush h lld a , ls r l h ; l=index /8r r ls r l hr r ls r l hr r lld b , arrayadd hl , band 7ld b , ald a , 1j r z , l 4l 3 : s l a adjnz l 3l 4 : p land (h l)ld (h l) , a ; mark the b i tpop hlj r bu2;−−−−−−−−−−−− not prime −−−−−−−−−−−nxp : in de ; number++ld a , dp 8jp nz , mbu ; i f (number<2048) ont inueha l tout : r e tarray :This ode was run in an emulator modi�ed from the Marel de Kogel ode. It keeps trak on the totalnumber of yles and instrutions exeuted. The repeat instrutions (LDIR, among others) are reorded asone instrution per eah repetition. These instrutions an be best onsidered as single-instrution loops,and, by the way, they an be interrupted.4.1.3 Compiled odeIn order to ompare the performane of both CPUs running ompiled ode the same sieve program wasoded using C. The soure listing follows: 15

void out (uns igned har) ;void simputh (u8 d){// out (d) ;}u8 array [2 5 6 ℄ ;u8 buf [4 ℄ ;main (){ u16 number , index ;u8 t ;array [0 ℄=0 x f f ;f o r (t=1; t ; t++) array [t ℄=0 x f f ;f o r (number=2;number<2048;number++) {i f (array [number>>3℄&(1<<(number&7))) {// p r i n t numberindex=number ;t =0;do {buf [t++℄=(index%10)+ '0 ';index /=10;} whi l e (index) ;do { simputh (buf[−−t ℄) ;} whi l e (t) ;simputh (' ') ;f o r (index=number+number ; index <2048; index+=number) {array [index>>3℄&=~(1<<(index &7)) ;}}}} This ode was ross-ompiled using �65� for the 6502 ase and �sd -mz80� for the Z80 ase. We mustbe aware that, when omparing the exeution times, we are atualy omparing the preformanes of both theCPUs and the ompilers. The results are disused in the following subsetion.4.1.4 Comparing resultsThe results of the previous tests are summarized in table 2. These results apply only for the odes presentedhere and an vary substantially for other appliations. Starting with assembler language results: if we anonsider these tests as representatives for the average appliations we an onlude that the Z80 requiresalmost double the number of lok yles than the 6502 to perform the same task, but, when omparing thenumber of instrutions the Z80 only requires about 80 % of the number of instrutions of the 6502. This lateran be though as the Z80 being �more CISC�: the savings ome mainly from LDIR and 16-bit arithmeti. Atthe end, the average Z80 is about a 30 % faster than the average 6502 thanks to its more than double lokrate.The ode size also gets redued by about a 30% in the Z80 ase thanks to its more omplex instrutions.This an be an interesting result if memory is a onern.Another interesting result is the perentage of dummy feth yles for the 6502. Even with many singlebyte instrutions in the ode, the dummy fethes are only an 8.24 % of the total lok yles. An enhaned16

Assembler Compiled C6502 Z80 Z80/6502 65 sd Z80/6502Code size (bytes) 202 144 0.71 819 644 0.79Number of lok yles 1181744 2282458 1.93 5815906 8220928 1.41Number of instrutions 389087 304526 0.78 1682544 928211 0.55Number of dummy fethes 97368 � � 598220 � �Clok Frequeny (MHz) 1.305 3.571 2.74 1.305 3.571 2.74Exeution time (ms) 905 639 0.706 4457 2302 0.516Average yles per instrution 3.04 7.49 2.46 3.46 8.86 2.56Perentage of dummy fethes 8.24 % � � 10.3% � �Table 2: Summary of test resultssequener with no dummy fethes will only improve the speed of the proessor by a 9 % while, probably,requiring many more transistors. Thus, the gain will not worth the e�ort. A wise design trade-o�.When the ompiled odes are ompared the Z80/sd ombination is a lear winner, requiring about halfthe number of instrutions and exeution time than the 6502/65. That omes at no surprise beause the65 ode inludes lots of subroutine alls to library helper funtions. This is the result of being ompilingode for a CPU that was designed without any regard for high-level languages. In both ases the exeutiontime is muh longer than the required for the orresponding assembler language program: about 5 timeslonger for the 65 ase and 3.6 times larger for the sd ase.The average number of loks per instrution also inreases for the ompiled odes. This is due to theextensive use of the (ind),y addressing mode and jsr/rts instrutions in the 6502 ase, while, for the Z80, theuse of the registers IX and IY also results in more average loks per instrution.As a onlusion: A 1 MHz 6502 has more or less the same proessing power as a 2 MHz Z80 whenprogramming the appliations diretly in assembler language. The performane drops more in the 6502 asewhen moving to a ompiled language due to its inadeuate instrution set. During the 8-bit omputer eramost of the Z80 were running with 3.5 to 4 MHz loks while many 6502 were only 1 MHz, so, on average,the Z80 systems were notieably faster. What saves the 6502 is the fat that it inludes about one half ofthe transistors of the Z80 and that made it heaper in a era when CPU hips were really expensive.4.2 Interrupt latenyThe 6502 has a reputation of being very fast at serviing interrupts, its interrupt lateny being very short.Some people even laims it is shorter than that of modern CPUs like ARMs! So, lets ompare it againstits main ontender, the Z80. Nobody laims the Z80 is very fast at serviing interrupts, but lets see. Inthe 6502 proessor the interrupt is exeuted as a modi�ed BRK instrution. This instrution takes 7 lokyles to exeute, and, thus, some people say the interrupt lateny is 7 lok yles. Of ourse, this simplistianalysis overlooks lots of things. The interrupt lateny an be de�ned as the maximum time lapse betweenthe assertion of the IRQ input and the exeution of the related servie ode. This inludes:1. The time needed for the urrent instrution to omplete its exeution. The instrution with themaximum number of yles has to be onsidered for a worst ase senario. In the 6502 this instrutionis 6 yles long (after exluding the BRK instrution that will be skipped due to the famous 6502 bug).But there is still another partiular ase: If the instrution interrupted is a onditional branh theinterrupt will be delayed until the next instrution. This adds another 3 yles for the taken branh.In the Z80 ase the longest instrution takes 23 lok yles.2. The time needed for jumping to the interrupt servie routine. This is 7 yles for the 6502 and 19yles for the Z80 (in interrupt mode 2).3. The time expended saving the used registers. After the interrupt all the CPU registers must retaintheir original values in order to not disturb the interrupted program. The interrupt all itself usuallyonly saves the PC and �ags. Any other register has to be saved expliitly. On some CPUs there arealternate register sets available for the interrupt routines that avoid saving registers to RAM. This isthe ase of the Z80: using the EXX and EX AF,AF' instrutions there is no need to push anything17

into the stak. The 6502 must save the needed registers on the stak, and this usually means the A, Xand Y registers, and remember: the NMOS 6502 laks the PHX and PHY instrutions.4. The time expended investigating the ause of the interrupt and jumping to its partiular servie ode.This is needed when an interrupt is shared between various soures. This is always the ase for the6502, even for a single interrupt soure, beause the interrupt routine has to disern between a hardwareinterrupt and the exeution of a BRK instrution. On the other hand, the proessors with vetorizedinterrupts an jump to the proper routine diretly. In the Z80 ase this an be aomplished by puttingthe CPU into the interrupt mode 2 (vetorized).Lets ompare the beginning of the 6502 and Z80 interrupt routines and lets do some yle ounting:6502 Z80
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−; 9 y l e s (urr . i n s t r .) ; 23 y l e s (urr . i n s t r .); + 7 y l e s (IRQ) ; +19 y l e s (IRQ, IM=2); sav ing r e g i s t e r s ; sav ing r e g i s t e r spha ; 3 y l e s exx ; 4 y l e stxa ; 2 y l e s ex af , af ' ; 4 y l e spha ; 3 y l e stya ; 2 y l e s ;−−− Atual ISR odepha ; 3 y l e s . . .; f i nd i ng the IRQ soure . . .b i t IOREG ; 4 y l e s . . .bpl nothard ; 2 y l e s;−−− Atual ISR ode.nothard : ; hek other soure s; among them BRK
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Total l a t eny : 35 y l e s Total l a t eny : 50 y l e s26 .8 us � 1.305 MHz 14 .0 us � 3.571 MHzAgain, the real interrupt lateny for the average Z80 is about half of that of the 6502. So, it doesn'tlooks like the 6502 is so fast when serviing interrupts. The 65C02 an use the PHX and PHY instrutionssaving 4 yles, but, this doesn't hange the piture too muh.5 RISC vs CISCAnother test is presented in order to ompare the 6502 proessor with a modern RISC proessor. First, Ithough about using an 8-bit AVR for this purpose, but I laked a tweakable emulator, and the AVR has lotsof instrutions making the writing of an emulator just too muh work. But, I already have the emulator formy own CPU design: the BN16, and it an be easily adapted for these tests. The BN16 is a 16-bit proessorand the omparison ould look too muh in favor of the RISC. But, as we latter see, the 16-bit arhitetureis more a handiap than an advantage for this partiular test, so, I went ahead with it. But, let present theBN16 proessor �rst.

18

Fetch
Unit

Execution
Unit

M
U

X

NORMAL

INTERR.

MUX

INTERR.

INC

NORMAL

Cin

a b

R1

R2

R3

R4

R5

R6

R7

ALU

+1

R0 − PC

R0 − PC

IR

CZS CZS

Flags

Data Address

Decoder

Control lines

nop

IRQ

ImmgateA

gateB

Mode
logic

Figure 5: Blok diagram of the BN16 CPU5.1 The BN16 proessorI designed the BN16 proessor as a teahing exerise some years ago. It is an extremely simple CPU witha Von Newman memory arhiteture, a two-stage feth-and-exeute pipeline and only 16 op-odes in itsinstrution set. Its blok diagram is shown in Figure 5. It inludes eight 16-bit registers with the R0register ating as a program ounter. Alternative PC and �ag registers are used when exeuting interruptservie routines as there is no formal stak for saving the status of the interrupted program. The instrutionregister, IR, stores the op-odes read from memory prior to its exeution, but, when the memory buses arenot available, the IR register is loaded with NOP op-odes. This happens when a load (LD) or store (ST)instrution is exeuted, turning these instrutions into e�etive 2-yle instrutions. The rest of the op-odesoperate with data on the registers and they are exeuted at a rate of 1 instrution per lok yle. For theLD and ST instrutions only the indexed addressing mode is supported: the memory address is stored inone of the 8 registers of the bank.The BN16 CPU has a very short instrution set. Its enoding is shown in �gure 6. Op-odes are 16-bitlong, but only the 4 most signi�ative bits determine the instrution, the rest being the ondition odes andoperands. All instrutions an be onditionally exeuted depending on the values of the �ags and on the bitsof their ondition odes. A 000 value in the ondition ode �eld of any instrution makes it a NOP. Manyinstrutions inlude three operands: two soure registers an a destination register. This makes the design ofthe deoder easy, but limits the number of available registers to 8.The BN16 CPU has very few instrutions but many of them an operate on the program ounter. Thisopens many possibilities to programmers, like alling subroutines by �rst opying the PC to other registerand then jumping. The PC an also be used as an index register for the LD instrution, thus, providing animmediate addressing mode. The ADDQ and SUBQ instrutions are a onvenient way of inrementing andderementing registers, while the JR instrution is also a onvenient way to jump to other program loation.These instrutions have immediate operands enoded in the op-ode, and, in the JR ase, the programounter is implied as the destination register. This later instrution ompliated the deoder design, but it is19

op Rd Racc n

op Rd Rbcc xxx

op Rdcc xxx Rb

op Rbcc xxx Ra

op Rd Ra Rbcc

JR

ST

LD

3 operands

2 operands

cc offset

Instruction format

op

op Instruction

NC
C
NZ
Z
NS
S

nop

no carry
carry
no zero
zero
positive
negative

T
F

always
000
001
010
011
100
101
110
111

cc Condition codes

ADDQ,SUBQ

Ra,Rb,Rd
Ra,Rb,Rd
Ra,Rb,Rd
Ra,Rb,Rd
Ra,n,Rd
Ra,n,Rd
Rb,Rd
Rb,Rd

Ra,Rb,Rd
Ra,Rb,Rd
Ra,Rb,Rd
Rb,Rd
(Rb),Rd
Ra,(Rb)
offset

ADD
SUB
ADC
SBB
ADDQ
SUBQ
NOT
NEG
AND
OR
XOR
ROR
LD
ST
JR
RETI

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

flags

C Z S
C
C
C
C
C

Z
Z
Z
Z
Z

S
S
S
S
S

Z
Z

S
S

−
−
−
−
−

C
−
−
− − −

− −

Z
Z
Z
Z
Z

S
S
S
S
S

− − −Figure 6: BN16 instrution set enodingworth the e�ort. The RETI instrution swithes bak to the normal PC and �ag registers from the interruptroutine.Due to pipelining the instrution that follows a jump (any instrution with PC as the destination register)is already loaded into the IR register and it will be exeuted immediately after the jump. The programmerhas to plae a NOP after a jump if there is no other useful instrution available. This does not apply for theLD (Rx),PC instrution, as the NOP is automatially loaded into the instrution register due to LD.The BN16 has no stak, but its funtionality an be implemented by software. One register has to beused as the stak pointer. Any register would be good, but, for the sake of software ompatibility, I hooseR1 for SP. Also, another register an be reserved for the PC storage during subroutine alls. I hoose R2 forthis role and named it LR.The CPU was designed for a CMOS tehnology using shemati apture, so, it is detailed to the transistorlevel. It has an stati design, inluding 7678 transistors. If the CPU were designed as a dynami, NMOS,hip, the transistor ount ould be way lower, with a rough estimate being about 3000 to 4000 transistors.This makes the BN16 similar to the 6502 in terms of hardware omplexity, and, therefore, justi�es evenmore its hoie for the CISC vs RISC test. I was amazed when I learned about the ARM arhiteture. TheBN16 is basially an saled-down version of the ARM, and I designed it without knowing muh about thatproessor.
20

5.1.1 BN16 test odeThe soure ode for the BN16 test follows:org 0 ; RESET ve to rj r i n i txor p , p , sp ; I n i t SPorg 2 ; IRQ ve to rr e t inopi n i t : ld (p) , l r ; F i l l s i e v e with onesword arrayld (p) , r3word 128 ; 2048/16ld (p) , r4word 65535l 1 : s t r4 , (l r)subq r3 , 1 , r3j r . nz l 1addq l r , 1 , l r; r7 = numberld (p) , r7 ; s t a r t with number 2word 2mbu : ro r r7 , r6 ; ompute po in t e rro r r6 , r6ro r r6 , r6ro r r6 , r6ld (p) , l rword 4095and r6 , l r , r6ld (p) , l rword arrayadd r6 , l r , r6ld (p) , r4 ; ompute maskword 15ld (p) , r3word 1and r4 , r7 , r4j r . z l 3nopl 2 : subq r4 , 1 , r4j r . nz l 2add r3 , r3 , r3l 3 : ld (r6) , r4 ; hek b i tand r4 , r3 , r3j r . z nextprimenop 21

; Prime number : p r i n t i t; d iv ide by 10xor r3 , r3 , r3 ; remainderor r7 , r7 , r6ld (p) , r5 ; d i v i d e rword 10xor r4 , r4 , r4 ; number o f d i g i t sl 35 : ld (p) , l r ; loop ounterword 16add r6 , r6 , r6 ; s h i f t l e f tl 4 : ad r3 , r3 , r3sub r3 , r5 , r3add . r3 , r5 , r3 ; r e s t o r e valueaddq . n r6 , 1 , r6 ; update quot i en tl 6 : subq l r , 1 , l rj r . nz l 4add r6 , r6 , r6 ; s h i f t l e f tr o r r6 , r6 ; undo l a s t s h i f tld (p) , l rword 48 ; ASCII '0 'add l r , r3 , r3subq sp , 1 , sp ; to s taks t r3 , (sp)addq r4 , 1 , r4or r6 , r6 , r6j r . nz l 35xor r3 , r3 , r3l 7 : ld (sp) , r3 ; from stakaddq p , 2 , l rj r puth ; p r i n t i taddq sp , 1 , spsubq r4 , 1 , r4j r . nz l 7nopld (p) , r3word 32 ; spaeaddq p , 2 , l rj r puth ; p r i n t i tnop; Now, mark mu l t i p l e s as not primes; r6 = indexadd r7 , r7 , r6 ; index=2∗numberbu l r : ld (p) . l r ; ompare with 2048word 2048sub r6 , l r , l rj r . n nextprimenopro r r6 , r5 ; ompute po in t e r22

ro r r5 , r5ro r r5 , r5ro r r5 , r5ld (p) , l rword 4095and r5 , l r , r5ld (p) , l rword arrayadd r5 , l r , r5ld (p) , r4 ; ompute maskword 15ld (p) , r3word 1and r4 , r6 , r4j r . z l 9nopl 8 : subq r4 , 1 , r4j r . nz l 8add r3 , r3 , r3l 9 : ld (r5) , r4 ; l e a r b i tnot r3 , r3and r4 , r3 , r3s t r3 , (r5)j r bu l radd r7 , r6 , r6 ; add number to indexnextprime :ld (p) , r6 ; ompare with maxword 2047sub r7 , r6 , r6j r . nz mbuaddq r7 , 1 , r7 ; next and idatehang : j r hangnop;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−; r ou t ine to p r i n t R3 as an ASCII harputh : or l r , l r , p ; re turn (dummy pr i n t)noparray : ; The s i e v e data s t a r t hereThis ode di�ers from that of the 6502 beause of the 16-bit data of the BN16 proessor. Being ableto do 16-bit arithmeti diretly means that one instrution is saved for additions or inrements, but in thewhole listing there are only two ases when this saving is ahieved: when adding the number to index andwhen inrementing number (; next andidate). Comparisons are also 16-bit long, but, in the 6502 ase, onlythe MSBs are ompared with the same results, so, there are no savings. On the other hand, when omputingthe bit mask the 16-bit proessor is in a lear disadvantage beause it has to iterate more times: The 8-bitmask requires between 0 to 7 shifts, with 3.5 shifts being the average ase, while, the 16-bit mask requires 7.5shifts on average. This means that, not only the shift instrution, but also the related ounter derement and23

jump have to be exeuted twie the times than for an 8-bit CPU, greatly overoming the savings from thefaster addition/inrement. Therefore, we must onlude that the Eratosthenes sieve test is biased in favorof the 8-bit CPUs as long as the 16-bit proessor is unable to do multibit shifts with single instrutions.The ode was run in an emulator (there is not a physial implementation of the BN16 yet), and theyle ount was reorded. Also, the number of fored-NOP fethes and program NOPs were aounted for.The former ome from LD or ST instrutions, and they help to alulate the average number of yles perinstrution. The program NOPs were inluded in the ode after jumps beause a wrong instrution will beexeuted otherwise.5.2 Comparison results Assembler ode test6502 BN16 BN16/6502Code size 202 bytes 112 words 1.11Number of instrutions 389087 424783 1.09Number of lok yles 1181744 472083 0.40Number of NOPs � 15616 �Average yles per instrution 3.04 1.11 0.36Perentage of NOPs � 3.67% �Table 3: Summary of test resultsThe results of the BN16 test and those of the 6502 are summarized in Table 3. Both odes have similarsizes when ompared as 2 bytes per word. The number of instrutions exeuted are about a 10% higher forthe RISC CPU. This is due to the longer bit mask omputation, but also to the fat that RISC instrutionsare simpler and more are needed to perform the same task. For instane, lets onsider a subroutine all. Inthe 6502 ase it is a single instrution, but in the BN16 it is done in three steps:1) addq p,2,lr ; Save PC+2 (return address) into R22) jr routine ; Jump3) nop ; Exeuted beause of pipeliningBut, even when exeuting more instrutions, the BN16 proessor requires less than half the number of lokyles than the 6502. By looking at this result it isn't a surprise that CISC CPUs beame extint duringthe nineties: you an do a lot more with the same number of transistors in a RISC arhiteture. The keyparameter for the high speed of the RISC proessor is the low average number of lok yles per instrution:about 1/3 of the 6502 (and the 6502 was well regarded for its low number of lok yles per instrution!).The BN16 also exeutes many NOPs. If these instrutions are subtrated from the total, the averagenumber of yles per instrution raises to 1.15, that is a 38% of the 6502 ase. Still, a huge improvementwith respet to the CISC.Verilog and Spie simulations of the BN16 CPU seems to indiate that it an run with a 30 MHz lok ina 350 nm CMOS tehnology. The worst ase delay omes from the arry propagation in the ALU. It ouldbe improved with arry lookahead iruitry, but, again, the BN16 was designed to be simple. Not beause itwas intended to be heap, like the 6502, but beause it had to be easy to understand.Referenes[1℄ 6502 Shemati. http://impulzus.sh.bme.hu/6502/download/6502_A4.ps.[2℄ Doumentation for the NMOS 65xx/85xx Instrution Set. http://nesdev.parodius.om/6502_pu.txt.[3℄ How MOS 6502 Illegal Opodes really work. http://www.pagetable.om/?p=39.[4℄ MOS Tehnology 6502 (Wikipedia). http://en.wikipedia.org/wiki/6502.[5℄ Wikipedia. http://en.wikipedia.org. 24

