
 1

TIPS AND TRICKS

 2

ARITHMETIC

CHAPTER 1

1.1. Input and output of numbers

 When working with numbers one often wants to input and output them via

the screen. The following programs show how th is can be done with

hexadecimal as well as decimal numbers.

1.1.1. Hexadecimal input

 This program allows you to enter hexadecimal numbers using the keyboard.

The number entered is displayed on the screen. The input stops if a

character different from the hexadecimal numbers (0.. F) is entered.

The program first deletes memory locations EXPR and EXPR+1. This ensures a

result equal to zero, even if an invalid number is entered. Next, the

program reads a character and checks whether or not it is a hexadecimal

number. If it is, then the upper bits of the number in the accumulator are

erased and the lower bits are shifted up. Now, these four bits can be

shifted to EXPR from the right. The preceeding number in EXPR is shifted to

the left by doing so.

 If you enter a number with more- than four digits, only the last four

digits are used.

 Example : ABCDEF => CDEF

HEXINPUT ROUTINE

EXPR EQU $80.1

SCROUT EQU $F6A4

GETCHR EQU $F6DD

ORG $A800

A800: A2 00 HEXIN LDX #0

A802: 86 80 STX EXPR

A804: 86 81 STX EXPR+1

A806: 20 2C A8 HEXINI JSR NEXTCH

A809: C9 30 CMP '0

A80B: 94 1E BCC HEXRTS

A80D: C9 3A CMP '9+1

A80F: 90 0A BCC HEXIN2

A811: C9 41 CMP 'A

A813: 90 16 BCC HEXRTS

A815: C9 47 CMP 'F+1

A817: 80 12 BCS HEXRTS

A819: E9 36 SBC 'A-10-1

A81B: 0A HEXIN2 ASL

A81C: 0A ASL

A81D: 0A ASL

A81E: 0A ASL

A81F: A2 04 LDX #4

A821: 0A HEXIN3 ASL

A822: 26 80 ROL EXPR

 3

A824: 26 81 ROL EXPR+1

A826: CA DEX

A827: DO F8 BNE HEXIN3

A829: FO DB BEQ HEXINI ALWAYS !!

A82B: 60 HEXRTS RTS

A82C: 20 DD F6 NEXTCH JSR GETCHR

A82F: 20 A4 F6 JSR SCROUT SHOW CHARAC'.

A832: 60 RTS

PHYSICAL ENDADDRESS: $A833

*** NO WARNINGS

EXPR $80

GETCHR $F6DD

HEXIN1 $A806

HEXIN3 $A821

NEXTCH $A82C

SCROUT $F6A4

HEXIN $A800 UNUSED

HEXIN2 $A81b

HEXRTS $A82B

1.1.2. Hexadecimal output

 The next program explains the output process of the calculated numerals.

 You will recognize, that the portion of the program which controls the

output is a subroutine. This subroutine only displays the contents of the

accumulator. This means that you first have to load the accumulator with,

for example, the contents of EXPR+1, then jump into the subroutine where

first the MSB (EXPR+1 in our case) and then the LSB (EXPR) will be printed.

Subroutine PRBYTE independently prints the most significant bytes of the

accumulator first and the least significant bytes second.

HEXOUT PRINTS 1 BYTE

 EXPR EPZ $80.1

 SCROUTE EQU $F6A4

ORG $A800

A800: A5 81 PRWORD LDA EXPR+1

A802: 20 0B A8 JSR PRBYTE

A805: A5 80 LDA EXPR

A807: 20 A8 JSR PRBYTE

A80A: 60 RTS

* THE VERY PRBYTE ROUTINE

A80B: 48 PRBYTE PHA

A80C: 4A LSR

A80D: 4A LSR

A80E: 4A LSR

 4

A80F: 4A LSR

A810: 20 16 A8 JSR HEXOUT

A813: 68 PLA

A814: 29 0E AND #$00001111

A816: C9 0A HEXOUT CMP #10

A818: B0 04 BCS ALFA

A81A: 09 30 ORA '0

A81C: D0 02 BNE HXOUT

A81E: 69 36 ALFA ADC 'A-10-1

A820: 4C A4 F6 HXOUT JMP SCROUT

PHYSICAL ENDADDRESS:$A823

*** NO WARNINGS

EXPR $80

PRWORD $A800 UNUSED

HEXOUT $A816

HXOUT $A820

SCROUT $F6A4

PRBYTE SA80P

ALFA $A81E

1.1.3. Decimal input

 When you calculate with numbers you probably prefer decimals over

hexadecimals. The following program can be used to read decimal numbers and

convert them into binary numbers readable by computers.

 The program first checks, to see if the input is a decimal number (0..9)

or if the input has been. terminated by another character. EXPR and EXPR+1

are erased. If a digit is accepted then the upper bits are erased. Next the

contents of EXPR and EXPR+1 are multiplied by 10 and the new number is

added. In the end the MSB is in location EXPR+1 and the LSB is in location

EXPR.

 Numbers greater than 65535 are displayed in modulo 65536 (the rest which

remains after deduction of 65535).

DECIMAL TO 1 WORD CONVERSION

EXPR EQU $80.1

SCROUT EQU $F6A4

GETCHR EQU $F6DD

ORG $A800

A800: A2 00 DECIN LDX #0

A802: 86 80 STX EXPR

A804: 86 81 STX EXPR+1

A806: 20 26 A8 DEC1 JSRN EXTCH

 5

A809: C9 30 CMP '0

A80B: 90 18 BCC DECEND

A80D: C9 3A CMP '9+1

A80F: B0 14 BCS DECEND

A811: 29 0E AND #$00001111

A813: A2 11 LDX #17

A815: D0 05 BNE DEC3 ALWAYS TAKEN ! !

A817: 90 02 DEC2 BCC *+4

A819: 69 09 ADC #10-1

A81B: 4A LSR

A81C: 66 81 DEC3 ROR EXPR+1

A81E: 66 80 ROR EXPR

A820: CA DEX

A821: DO F4 BNE DEC2

A823: F0 E1 BEQ DEC1 ALWAYS ! !

A825: 60 DECEND RTS

A826: 20 DD F6 NEXTCH JSR GETCHR

A829: 20 A4 F6 JSR SCROUT

A82C: 60 RTS

PHYSICAL ENDADDRESS: $A82D

*** NO WARNINGS

EXPR $80

GETCHR $F6DD

DEC1 $A806

DEC3 $A81C

NEXTCH $A826

SCROUT $F6A4

DECIN $A800 UNUSED

DEC2 $A817

DECEND $A825

1.1.4. Decimal output

 The next program allows you to display decimal numbers.

 The program works as follows:

 The X-register is loaded with the ASCII equivalent of the digit 0. This

number is then incremented to the highest potency of 10 (10000) and is

displayed on the screen.

 The same procedure is repeated for 1000, 100, and 10. The remaining is

converted into an ASCII number, using an OR-command, and is displayed.

 You might want to change the output routine so that it avoids leading

zeroes.

 6

2 BYTE BINARY NUMBER TO 5 DIGITS DECIMAL

CONVERSION WITH LEADING ZEROES

DECL EQU $80

DECH EQU $81

TEMP EQU $82

SCROUT EQU $F6A4

ORG $A800

A800: A0 07 DECOUT LDY #7

A802: A2 30 DECOUT1 LDX '0

A804: 38 DECOUT2 SEC

A805: A5 80 LDA DECL

A807: F9 2E A8 SBC DECTAB-1,Y

A80A: 48 PHA

A80B: 88 DEY

A80C: A5 81 LDA DECH

A80E: F9 30 A8 SBC DECTAB+1,Y

A811: 90 09 BCC DECOUT3

A813: 85 81 STA DECH

A815: 68 PLA

A816: 85 80 STA DECL

A818: E8 INX

A819: C8 INY

A81A: DO E8 BNE DECOUT2

A81C: 68 DECOUT3 PLA

A81D: 8A TXA

A81E: 84 82 STY TEMP

A820: 20 A4 F6 JSR SCROUT

A823: A4 82 LDY TEMP

A825: 88 DEY

A826: 10 DA BPL DECOUT1

A828: A5 80 LDA DECL

A82A: 0930 ORA '0

A82C: 4C A4 F6 JMP SCROUT

A82F: 0A 00 DECTAB DFW 10

A831: 64 00 DFW 100

A833: E8 03 DFW 1000

A835: 10 27 DFW 10000

PHYSICAL ENDADDRESS: $A837

*** NO WARNINGS

DECL $80

TEMP $82

DECOUT $A800 UNUSED

DECOUT2 $A804

DECTAB $A82F

DECH $81

SCROUT $F6A4

DECOUTI $A802

DECOUT3 $A81C

 7

1.2. 16-bit arithmetic without sign

1.2.1. 16-bit addition

 The 16-bit addition is well known, but it is shown here one more time,

together with the subtraction.

16 BIT ADDITION UNSIGNED INTEGER

EXPR : = EXPR1 + EXPR2

EXPRl EPZ $80.1

EXPR2 EPZ $82.3

ORG $A800

A800: 18 ADD CLC

A801: A5 80 LDA EXPR1

A803: 65 82 ADC EXPR2

A805: 85 80 STA EXPR1

A807: A5 81 LDA EXPR1+1

A809: ó5 83 ADC EXPR2+1

A80B: 85 81 STA EXPR1+1

A80D: 60 RTS

PHYSICAL ENDADDRESS: $A80E

*** NO WARNINGS

EXPR1 $80

EXPR2 $82

ADD $A800 UNUSED

1.2.2. 16-bit subtraction

16 BIT SUBTRACTION UNSIGNED INTEGER

EXPR : = EXPR1 - EXPR2

EXPR1 EPZ $80.1

EXPR2 EPZ $82.3

ORG $A800

A800: 38 SUB SEC

A801: A5 80 LDA EXPR1

A803: E5 82 SBC EXPR2

 8

A805: 85 80 STA EXPR1

A807: A5 81 LDA EXPR1+1

A809: E5 83 SBC EXPR2+l

A80B: 85 81 STA EXPR1+1

A80D: 60 RTS

PHYSICAL ENDADDRESS: $A80E

*** NO WARNINGS

EXPR1 $80

EXPR2 $82

SUB $A800 UNUSED

1.2.3. 16-bit multiplication

 The multiplication is much more complicated than addition or subtraction.

Multiplication in the binary number system is actually the same as in the

decimal system. LPt's have a look at how we multiply using the decimal

system. For example, how do we calculate 5678*203?

 5678

 203 *

 17034

 00000

 11356 =

 1152634

 With each digit the previous number is shifted to the right. If the

digit is different from zero the new interim results are added. In the

binary system it works the same way. For example:

1011

1101 *

1011

 0000

 l0ll

 l0ll =

 10001111

.

 As you can see it is simpler in the binary system than in the decimal

system. Since the highest possible number for each digit is 1 the highest

interim results is equal to the multiplicand.

 The following program in principle does the same as the procedure

described above, except that the interim result is shifted to the right and

the multiplicand is added, if required. The results are the same.

 Six memory locations are required. Two of these (SCRATCH and SCRATCH+1)

are used only part of the time, while the other four locations keep the two

numbers to be multiplied (EXPR1 and EXPR1+1, EXPR2 and EXPR2+1). After the

calculations the result is in locations EXPR1 (LSB) and EXPR1+1 (MSB).

 9

16 BIT MULTIPLICATION UNSIGNED INTEGER

EXPR := EXPR * EXPR2

EXPR1 EPZ $80.1

EXPR2 EPZ $82.3

SCRATCH EPZ $84.5

ORG $A800

A800: A2 00 MUL LDX #0

A802: 86 84 STX SCRATCH

A804: 86 85 STX SCRATCH+1

A806: A0 10 LDY #16

A808: D0 0D BNE MUL2 ALWAYS !!

A80A: 18 MUL1 CLC

A80B: A5 84 LDA SCRATCH

A80D: 65 82 ADC EXPR2

A80F: 85 84 STA SCRATCH

A811: A5 85 LDA SCRATCH+1

A813: 65 83 ADC EXPR2+1

A815: 85 85 STA SCRATCH+1

A817: 46 85 MUL2 LSR SCRATCH+1

A819: 66 84 ROR SCRATCH

A81B: 66 81 ROR EXPR1+1

A81D: 66 80 ROR EXPR1

A81F: 88 DEY

A820: 30 04 BMI MULRTS

A822: 90 F3 BCC MUL2

A824: B0 E4 BCS MUL1

A826: 60 MULRTS RTS

PHYSICAL ENDADDRESS: $A827

*** NO WARNINGS

EXPR1 $80

EXPR2 $82

SCRATCH $84

MUL $A800 UNUSED

MUL1 $A80A

MUL2 $A817

MULRTS $A826

1.2.4. 16-bit division

 The division of two numbers actually is just the opposit of the

multiplication. Therefore, you can see in the program below, that the

divisor is subtracted and the dividend is shifted to the left rather than

to the right. The memory locations used are the same as with the

multiplication, except that locations SCRATCH and SCRATCH+1 are named

REMAIN and REMAIN+1. This means the remainder of the division is stored in

those locations.

 10

16 BIT DIVISION UNSIGNED INTEGER

EXPR1 : = EXPR1 OVER EXPR2

REMAIN : = EXPR1 MOD EXPR2

EXPR1 EPZ $80.1

EXPR2 EPZ $82.3

REMAIN EPZ $84.5

ORG $A800

A800: A2 00 DIV LDX #0

A802: 86 84 STX REMAIN

A804: 86 85 STX REMAIN+1

A806: A0 10 LDY #16

A808: 06 80 DIV1 ASL EXPR1

A80A: 26 81 ROL EXPR1+1

A80C: 26 84 ROL REMAIN

A80E: 26 85 ROL REMAIN+1

A810: 38 SEC

A811: A5 84 LDA REMAIN

A813: E5 82 SBC EXPR2

A815: AA TAX

A816: A5 85 LDA REMAIN+1

A818: E5 83 SBC EXPR2+1

A81A: 90 06 BCC DIV2

A81C: 86 84 STX REMAIN

A81E: 85 85 STA REMAIN+1

A820: E6 80 INC EXPR1

A822: 88 DIV2 DEY

A823: D0 E3 BNE DIV1

A825: 60 RTS

PHYSICAL ENDADDRESS: $A826

*** NO WARNINGS

EXPR1 $80

EXPR2 $82

REMAIN $84

DIV $A800 UNUSED

DIV1 $A808

DIV2 $A822

 11

STRINGOUTPUT

CHAPTER 2

2.1. Output of text

 With most programs it is necessary to display text (menues etc.).

 The following program allows you to display strings of any length at any

location you desire. The output command can be located at any place within

your program.

 How does that program work ?

 As you know the 6502 microprocessor uses its stack to store the return

address if a JSR-command is to be executed. The number that is stored on

the stack actually is the return-address minus one. The trick used in this

program is, that the string to be printed is stored immediately after the

JSR-command and the last character of the string is incremented by 128. The

subroutine calculates the start address of tie string, using the number on

the stack, and reads the string byte by byte, until it finds the byte which

has been incremented by 128. The address of this byte now is stored on the

stack and an RTScommand is executed. 8y doing so, the string is jumped and

the command after it is executed.

STRINGOUTPUT FOR VARIOUS

 LENGTH

AUX EPZ $80

SCROUT EQU $F6A4

ORG $A800

* EXAMPLE

A800: 20 16 A8 EXAMPLE JSR PRINT

A803: 54 48 49 ASC \THIS IS AN EXAMPLE

A806: 53 20 49

A809: 53 20 41

A80C: 4E 20 45

A80F: 58 41 4D

A812: 50 4C C5

A815: 60 RTS

* THE VERY PRINTROUTINE

A816: 68 PRINT PLA

A817: 85 80 STA AUX

A819: 68 PLA

A81A: 85 81 STA AUX+1

A81C: A2 00 LDX #0

A81E: E6 80 PRINT1 INC AUX

A820: D0 02 BNE *+4

A822: E6 81 INC AUX+1

A824: A1 80 LDA (AUX,X)

 12

A826: 29 7E AND #$7F

A828: 20 A4 F6 JSR SCROUT

A82B: A2 00 LDX #0

A82D: A1 80 LDA (AUX,X)

A82F: 10 ED BPL PRINTI

A831: A5 81 LDA AUX+1

A833: 48 PHA

A834: A5 80 LDA AUX

A836: 48 PHA

A837: 60 RTS

PHYSICAL ADDRESS: $A838

*** NO WARNINGS

AUX S80

SCROUT $F6A4

EXAMPLE $A800 UNUSED

PRINT $A816

PRINT1 $A81E

 13

INTRODUCTION TO CIO

CHAPTER 3

 The CIO can handle up to 8 devices/files at the same time. This happens

via so called Input Output Control Blocks (IOCB). This means that there are

8 IOCB's starting from $0340. Each of the IOCB's is 16 bytes long.

BLOCK # ADDRESS

IOCB #0 $0340

IOCB #1 $0350

IOCB #2 $0360

IOCB #3 $0370

IOCB #4 $0380

IOCB #5 $0390

IOCB #6 $03A0

IOCB #7 $03B0

 A single IOCB has the following internal scheme:

NAME ADDRESS

ICHID HANDLER ID

ICDNO DEVICE NUMBER

ICCMD COMMAND

ICSTA STATUS

ICBAL

ICBAH
BUFFERADR

ICPTL

ICPTH
PUTADR

ICBLL

ICBLH
BUFFERLEN

ICAX1 AUX1

ICAX2 AUX2

ICAX3

ICAX4

ICAX5

ICAX6

Remaining

4 bytes

 There are just a few locations which are important to the user:

- The commandbyte which contains the command to be executed by the CIO.

- The bufferaddress which contains the address of the actual databuffer.

The bufferlength which contains the number of bytes to be transferred

(rounded up to a variety of 128 bytes for the cassette device)

- And there are two auxiliaries which contain device-dependent information.

 14

 There are also locations which will be altered by CIO such as:

- The handler-ID is an offset to the devicetable. This table contains all

device names and pointers to the device specific handlertable.

device name

handler table

address

one entry

other

entries

zero fill to

end of table

 A handlertable looks like:

OPEN-1

CLOSE-1

GETBYTE-1

PUTBYTE-1

GETSTATUS-1

SPECIAL-1

JMP INIT

& 00

The CIO is thus quite clear to the user. It is easy to add new devices

by adding just 3 bytes to the devicetable and to make a specific

handlertable for this device. You can also change the handlerpointer of an

existing device and let point it to a new handler. Later we will describe

how to add or change devices.

- The devicenumber shows us which subdevice is meant. (e.g. Disknumber or

RS232 Channel).

- After calling CIO the status will be altered. A 1 means a successfull

operation while a value greater than 128 means an error has occurred.

- PUTADR is used internally by the CIO

- If there have been less bytes transferred than desired, because of an EOL

or an error, BUFLEN will contain the actual number of transferred bytes.

The standard CIO commands:

- OPEN opens a file.

 Before execution the following IOCB locations have to be set:

COMMAND = $03

BUFFADR points to, device/filename specification (like C: or D: TEST. SRC)

terminated by an EOL ($98)

AUX1 = OPEN-directionbits (read or write) plus devicedependent information.

AUX2 = devicedependent information.

After execution:

HANDLER ID = Index to the devicetable.

 15

DEVICE NUMBER = number taken from device/f filename specification

STATUS = result of OPEN-Operation.

- CLOSE closes an open IOCB

 Before execution the following IOCB location has to be set:

COMMAND = $0C

 After execution: HANDLER ID = $FF

STATUS = result of CLOSE-operation

- GET CHARACTERS read byte aligned. EOL has no termination feature.

 Before execution the following IOCB locations have to be set:

COMMAND = $07

BUFFERADR = points to databuffer.

BUFFERLEN = contains number of characters to be read. If BUFFERLEN is equal

to zero the 6502 A-register contains the data.

 After execution:

STATUS = result of GET CHARACTER-operation

BUFFERLEN = number of bytes read to the buffer. The value will always be

equal before execution, only if EOF or an error occurred.

- PUT CHARACTERS write byte aligned

 Before execution the following IOCB locations have to be set:

COMMAND = $0B

BUFFERADR = points to the datab~ffer

BUFFERLEN = number of bytes to be put, if equal to zero the 6502 A-register

has to contain the data.

 After execution:

STATUS = result of PUT CHARACTER-operation

GET RECORD characters are read to the databuffer until the buffer is full,

or an EOL is read from the device/file.

Before execution the following IOCB locations have to be set:

COMMAND = $05

BUFFERADR = points to the databuffer.

BUFFERLEN = maximum of bytes to be read (Including EOL character)

After execution:

STATUS = result of the GET RECORDoperation

BUFFERLEN = number of bytes read to buf fer this may less then the maximum

length.

- PUT RECORD characters are written to the device/file from the databuffer

until the buffer is empty or an EOL is written. If the buffer is empty CIO

will automatically send an EOL to the device/file.

Before execution the following IOCB locations have to be set:

COMMAND = $09

HUFFERADR = points to databuffer.

BUFFERLEN = maximum number of bytes in databuffer.

After execution:

STATUS = result of PUT RECORD-operation.

In addition to the main-commands, there is also a GET STATUS ($0D)

command, which obtains the status from the device/filecontroller and places

these four bytes from location $02EA (DVSTAT). Commands greater than $0D

are so called SPECIALS and devicehandler-dependent.

GET STATUS and SPECIALS have an implied OPEN-option. Thus the file will be

automatically opened and closed if it wasn't already opened.

 How to link the CIO with machine language?

 16

 First we have to modify the IOCB before calling CIO.

 The offset to the IOCB (IOCB# times 16) has to be in the X-register.

The STATUS will be loaded in the Y-register of ter returning from CIO. It

is not necessary to explicitly check the Y-register (Comparing with 128)

because loading the status into the Y-register was the last instruction

before leaving CIO with an RTS. We simply jump on the signflag (BMI or

BPL). The sign flag is set if an error occurred. In the next section we

will discuss it in more detail with an example.

 How to read or write data in machine language?

To describe the writing of data to a device/file we will take the

cassettedevice as an example. We can also use any other device because CIO

is very clear-cut (see introduction).

Before discussing the program, some conventions must be discussed.

The user has to put the address of his databuffer into the locations

BUFFER ($80.1) and the bufferlength into the locations BUFLEN ($82.3). Then

the program should be called as a subroutine. The description of this

subroutine follows.

First we have to open the cassette, so we load the IOCB-offset in the X-

register, store the OPEN-command in ICCMD, and let the BUFADR (ICBAL and

ICBAH) point to the device/filename specification. We have to store the

write-direction in ICAX1 and the tape-recordlength (128) in ICAX2, just

call CIO ($E456). The Signflag indicates if an error occurred.

After a correct opening of the file for writing data, bit 3 is set

because AUX1 contains a $08 (bit 2 is readbit).

 W R

7 6 5 4 3 2 1 0

 AUX1

ICCMD will be changed into the PUT CHARACTERS-command ($0B), BUFFADR

points to the User-Databuffer (contents of BUFFER) and BUFLEN (ICBLL and

ICBLH) will contain the number of bytes to write (the user stores this

value BUFLEN ($82. 3)). Next CIO will be called, and after successfull

operation, the file will be closed (ICCMD=$0C).

If, during any of these three CIO-calls, an error occurs, the file will

be closed and both the ACCUMULATOR and Y-register will contain the STATUS

(errorcode).

By changing the string at CFILE in for instance “D:TEST.TST” the program

will write the buffer to the specified diskfile.

The second listing shows you a program that reads from a device, only

two bytes are different, so the program is selfexplaining.

 17

WRITE BUFFER TO CASSETTE

 BUFFER EPZ $80.1

 BUFLEN EPZ $82.3 - BUFLEN ROUNDED

 UP TO 128 BYTES

 ICCMD EQU $0342

 ICBAL EQU $0344

 ICBAH EQU $0345

 ICBLL EQU $0348

 ICBLH EQU $0349

 ICAX1 EQU $034A

 ICAX2 EQU $034B

OPEN EQU 3

PUTCHR EQU 11

CLOSE EQU 2

WMODE EQU 8

RECL EQU 128

CIO EQU $E456

EOL EQU $9B

IOCBNUM EQU 1

ORG $A800

* OPEN FILE

A800: A2 10 LDX #IOCBNUM*16

A802: A9 03 LDA #OPEN

A804: 9D 42 03 STA ICCMD,X

A807: A9 08 LDA #WMODE

A809: 9D 4A 03 STA ICAXI,X

A80C: A9 80 LDA #RECL

A80E: 9D 4B 03 STA ICAX2,X

A811: A9 56 LDA #CFILE:L

A813: 9D 44 03 STA ICBAL,X

A816: A9 A8 LDA #CFILE:H

A818: 9D 45 03 STA ICBAH,X

A81B: 20 56 E4 JSR CIO

A81E: 30 29 BMI CERR

* PUT BUFFER IN RECORDS TO CASSETTE

A820: A9 0B LDA #PUTCHR

A822: 9D 42 03 STA ICCMD,X

A825: A5 80 LDA BUFFER

A827: 9D 44 03 STA ICBAL,X

A82A: A5 81 LDA BUFFER+1

A82C: 9D 45 03 STA ICBAH,X

A82F: A5 82 LDA BUFLEN

 18

A831: 9D 48 03 STA ICBLL,X

A834: A5 83 LDA BUFLEN+1

A836: 9D 49 03 STA ICBLH, X

A839: 20 56 E4 JSR CIO

A83C: 30 08 BMI CERR

* CLOSE CASSETTE FILE

A83E: A9 0C LDA #CLOSE

A840: 9D 42 03 STA ICCMD,X

A843: 20 56 E4 JSR CIO

A846: 30 01 BMI CERR

* RETURN TO SUPERVISOR

A848: 60 RTS

* RETURN WITH ERRORCODE IN ACCUMULATOR

A849: 98 CERR TYA

A84A: 48 PHA

A84B: A9 0C LDA #CLOSE

A84D: 9D 42 03 STA ICCMD,X

A850: 20 56 E4 JSR CIO

A853: 68 PLA

A854: A8 TAY

A855: 60 RTS

A856: 43 3A CFILE ASC "C:"

A858: 9B DFB EOL

PHYSICAL ENDADDRESS: $A859

*** NO WARNINGS

BUFFER $80

BUFLEN $82

ICCMD $0342

ICBAL $0344

ICBAH $0345

ICBLL $0348

ICBLH $0349

ICAX1 $034A

ICAX2 $034B

OPEN $03

PUTCHR $0B

CLOSE $0C

WMODE $08

RECL $80

CIO $E456

EOL $9B

IOCBNUM $01

CERR $A849

CFILE $A856

 19

READ BUFFER FROM CASSETTE

BUFFER EPZ $80.1

BUFLEN EPZ $82.3 BUFLEN ROUNDED

 UP TO 128 BYTES

 ICCMD EQU $0342

 ICBAL EQU $0344

 ICBAH EQU $0345

 ICBLL EQU $0348

 ICBLH EQU $0349

 ICAX1 EQU $034A

 ICAX2 EQU $034B

OPEN EQU 3

GETCHR EQU 7

CLOSE EQU 12

RMODE EQU 4

RECL EQU 128

CIO EQU $E456

EOL EQU $9B

IOCBNUM EQU 1

ORG $A800

* OPEN FILE

A800: A2 10 LDX #IOCBNUM*16

A802: A9 03 LDA #OPEN

A804: 9D 42 03 STA ICCMD,X

A807: A9 04 LDA #RMODE

A809: 9D 4A 03 STA ICAXI,X

A80C: A9 80 LDA #RECL

A80E: 9D 4B 03 STA ICAX2,X

A811: A9 56 LDA #CFILE:L

A813: 9D 44 03 STA ICBAL,X

A816: A9 A8 LDA #CFILE:H

A818: 9D 45 03 STA ICBAH,X

A81B: 20 56 E4 JSR CIO

A81E: 30 29 BMI CERR

* GET BUFFER IN RECORDS FROM CASSETTE

A820: A9 07 LDA #GETCHR

A822: 9D 42 03 STA ICCMD,X

A825: A5 80 LDA BUFFER

A827: 9D 44 03 STA ICBAL,X

A82A: A5 81 LDA BUFFER+1

A82C: 9D 45 03 STA ICBAH,X

A82F: A5 82 LDA BUFLEN

 20

A831: 9D 48 03 STA ICBLL, X

A834: A5 83 LDA BUFLEN+1

A836: 9D 49 03 STA ICBLH,X

A839: 20 56 E4 JSR CIO

A83C: 30 0B BMI CERR

* CLOSE CASSETTE FILE

A83E: A9 0C LDA #CLOSE

A840: 9D 42 03 STA ICCMD,X

A843: 20 56 E4 JSR CIO

A846: 30 01 BMI CERR

* RETURN TO SUPERVISOR

A848: 60 RTS

* RETURN WITH ERRORCODE ACCUMULATOR

A849: 98 CERR TYA

A84A: 48 PHA

A84B: A9 0C LDA #CLOSE

A84D: 9D 42 03 STA ICCMD,X

A850: 20 56 E4 JSR CIO

A853: 68 PLA

A854: A8 TAY

A855: 60 RTS

A856: 43 3A CFILE ASC "C:"

A858: 9B DFB EOL

PHYSICAL ENDADDRESS: $A859

*** NO WARNINGS

BUFFER $80

BUFLEN $82

ICCMD $0342

ICBAL $0344

ICBAH $0345

ICBLL $0348

ICBLH $0349

ICAX1 $034A

ICAX2 $034B

OPEN $03

GETCHR $07

CLOSE $0C

RMODE $04

RECL $80

CIO $E456

EOL $9B

IOCBNUM $01

CERR $A849

FILE $A856

 21

INTRODUCTION TO THE DISK CONTROLLER

CHAPTER 4

 We already know how to handle any device/file via CIO, including handle

a diskfile. Included on a disk is also a sector-IO which allows you to

address a single sector for a read or write handling. Sector-IO doesn't

need any file on the disk. The disk has only to be formatted.

 A floppy disk with the ATARI drive has 720 sectors and each of them is

fully addressable.

 How does the sector-IO function?

 The disk controller has a simplistic design containing a single IOCB

like Data Control Block (DCB). This DCB is described in the following

scheme.

DCBSBI Serial bus ID

DCBDRV Disk drive #

DCBCMD Command

DCBSTA IO Status

DCBUF LO

DCBUF HI
Buffer IO address

DCBTO LO

DCBTO HI
Timeout counter

DCBCNT LO

DCBCNT HI
IO Buffer length

DCBSEC LO

DCBSEC HI
IO Sector number

- Instead of a handler-ID there is a BUS ID (DCBSBI) to address a

particular diskdrive via the Serial-Bus of the ATARI.

- Also a logical drivenumber (DCBDRV)

- A commandbyte (DCBCMD), which is similar to an IOCB, and 5 commands for

sector-IO, which will be described later.

- The statusbyte for error detection after, and data-direction previous to

execution of the command ($80 is write, $40 is read).

- The DCBBUF locations (L and H) to point to the databuffer.

- DCBTO (L and H) is a special word containing the maximum time for

executing a command, so called timeout.

- DCBCNT (L and H) is a device specific word which contains the sector

length (128 for the 810-drive or 256 for the double density drives).

- DCBSEC (L & H) contains the sector number to do IO on.

 22

The DCB-commands

Prior to executing any DCB-command, the following DCB-entries must be

set.

DCBSBI has to contain the bus-ID of the drive:

DRIVE 1 = $31 = '1

DRIVE 2 = $32 = '2

DRIVE 3 = $33 = '3

URIVE 4 = $34 = '4

DCBDRV has to contain the logical drive number (1..4).

DCBTO the timeout (normally 15; lowbyte=$0F highbyte=$00).

- READ SECTOR reads one sector specified by the user

 DCBCMD = $52 = 'R

 DCBBUF = points to databuffer

 DCBCNT = contains sector length

 DCBSEC = number of sector to read

 After execution:

 DCBSTAT = result of HEAD SECTUR-operation

- PUT SECTOR writes one sector specified by the user without verify.

 DCBCMD = $50 = 'P

 DCBBUE' = points to databufter

 DCBSEC = number of sector to write

 After execution:

 DCBSTAT = result of PUT SECTOR-operation

- WRITE SECTOR writes one sector specified by the user with automatic

verify.

 DCBCMD = $57 = 'W

 Further like PUT SECTOR.

- STATUS REQUEST obtains the status from the specified drive.

 DCBCMD = $53 = 'S

 After execution:

 DCBSTAT = result of STATUS REQUEST operation

The drive outputs four bytes end the controller puts them to $02EA

(DVSTAT).

- FORMAT formats the specified disk.

 DCBCMD = $21 = '!

 DCBTO = has to be larger than 15 due to more time taken by the FORMAT-

command. You can ignore the error, but this will be risky.

 23

 After execution:

 DCBSTAT = result of the FORMAT-operation.

 How is the disk controller invoked?

Because the disk controller is resident, this is a simple process. You

don't have to load DOS, nor anything similar. You just have to call the

SIO (Serial IO $E459) instead of the CIO. Therefore, you can see that it

is quite easy to link the Diskcontroller with machine language.

How to write a sector to disk

The first program writes a specified sector from a buffer to

diskdrive#1. There are a few conventions to call this program as

subroutine. The user has to put the buffer address into the pointer

locations labelled BUFFER and the sector number into the locations

labelled SECTR. The program also needs a RETRY-location, to serve as a

counter so the program is able to determine how of ten it will retry the

IO.

The next paragraph describes the subroutine.

At first we built the DCB, special we move a $80 (BIT 3 the write bit

is set) to DCBSTA and we retry the IO 4 times. SIO does, as well as CIO,

load the STATUS into the Y-register so you only have to check the

signflag again. After an error occurence we decrement the retry value

and set DCBSTA again, then try again.

By using this program, you only have to look at the signflag after

returning for error detection (signflag TRUE means error, otherwise

success).

The second program reads a sector instead of writing it. The only two

bytes which are different are the DCBCMD and the DCBSTA ($90 for read) .

WRITE A SECTOR TO DISK

SECTR EQU $80.1

BUFFER EQU $82.3

RETRY EQU $84

 DCBSBI EQU $0300

 DCBDRV EQU $0301

 DCBCMD EQU $0302

 DCBSTA EQU $0303

 DCBBUF EQU $0304

 DCBTO EQU $0306

 DCBCNT EQU $0308

 DCBSEC EQU $030A

SIO EQU $E459

ORG $A80 0

 24

A800: A5 82 WRITSECT LDA BUFFER

A802: 8D 04 03 STA DCBSUF

A805: A5 83 LDA BUFFER+1

A807: 8D 05 03 STA DCBBUF+1

A80A: A5 80 LDA SECTR

A80C: 8D 0A 03 STA DCBSEC

A80F: A5 81 LDA SECTR+1

A811: 8D 0B 03 STA DCBS EC+1

A814: A9 57 LDA 'W REPLACE "W" BY A "P" IF

A816: 8D 02 03 STA DCBCMD YOU WANT IT FAST

A819: A9 80 LDA #$80

A81B: 8D 03 03 STA DCBSTA

A81E: A9 31 LDA '1

A820: 8D 00 03 STA DCBSBI

A823: A9 01 LDA #1

A825: 8D 01 03 STA DCBDRV

A828: A9 0F LDA #15

A82A: 8D 06 03 STA DCBTO

A82D: A9 04 LDA #4

A82F: 85 84 STA RETRY

A831: A9 80 LDA # 12 8

A833: 8D 08 03 STA DCBCNT

A836: A9 00 LDA #0

A838: 8D 09 03 STA DCBCNT+1

A83B: 20 59 E4 JMPSIO JSR SIO

A83E: 10 0C BPL WRITEND

A840: C6 84 DEC RETRY

A842: 30 08 BMI WRITEND

A844: A2 80 LDX #$80

A846: 8E 03 03 STX DCBSTA

A849: 4C 3B A8 JMP JMPSIO

A84C: AC 03 03 WRITEND LDY DCBSTA

A84F: 60 RTS

PHYSICAL ENDADDRESS: $A850

*** NO WARNINGS

SECTR $80 BUFFER $82

RETRY $84 DCBSBI $0300

DCBDRV $0301 DCBCMD $0302

DCBSTA $0303 DCBBUF $0304

DCBTO $0306 DCBCNT $0308

DCBSEC $030A SIO $E459

WRITSECT $A800 UNUSED JMPSIO $A83B

WRITEND $A84C

 25

READ A SECTOR FROM DISK

SECTR EQU $80.1

BUFFER EQU $82.3

RETRY EQU $84

 DCBSBI EQU $0300

 DCBDRV EQU $0301

 DCBCMD EQU $0302

 DCBSTA EQU $0303

 DCBBUF EQU $0304

 DCBTO EQU $0306

 DCBCNT EQU $0308

 DCBSEC EQU $030A

SIO EQU $E459

ORG $A800

A800: A5 82 READSECT LDA BUFFER

A802: 8D 04 03 STA DCBSUF

A805: A5 83 LDA BUFFER+1

A807: 8D 05 03 STA DCBBUF+1

A80A: A5 80 LDA SECTR

A80C: 8D 0A 03 STA DCBSEC

A80F: A5 81 LDA SECTR+1

A811: 8D 0B 03 STA DCBS EC+1

A814: A9 52 LDA 'R

A816: 8D 02 03 STA DCBCMD

A819: A9 40 LDA #40

A81B: 8D 03 03 STA DCBSTA

A81E: A9 31 LDA '1

A820: 8D 00 03 STA DCBSBI

A823: A9 01 LDA #1

A825: 8D 01 03 STA DCBDRV

A828: A9 0F LDA #15

A82A: 8D 06 03 STA DCBTO

A82D: A9 04 LDA #4

A82F: 85 84 STA RETRY

A831: A9 80 LDA #128

A833: 8D 08 03 STA DCBCNT

A836: A9 00 LDA #0

A838: 8D 09 03 STA DCBCNT+1

A83B: 20 59 E4 JMPSIO JSR SIO

A83E: 10 0C BPL READEND

A840: C6 84 DEC RETRY

A842: 30 08 BMI READEND

 26

A844: A2 80 LDX #$80

A846: 8E 03 03 STX DCBSTA

A849: 4C 3B A8 JMP JMPSIO

A84C: AC 03 03 READEND LDY DCBSTA

A84F: 60 RTS

PHYSICAL ENDADDRESS: $A850

*** NO WARNINGS

SECTR $80

BUFFER $82

RETRY $84

DCBSBI $0300

DCBDRV $0301

DCBCMD $0302

DCBSTA $0303

DCBBUF $0304

DCBTO $0306

DCBCNT $0308

DCBSEC $030A

SIO $E459

READSECT $A800 UNUSED

JMPSIO $A83B

READEND $A84C

 27

HOW TO MAKE A BOOTABLE PROGRAM

CHAPTER 5

 What is a bootable program ?

 A bootable program is a program which will be automatically loaded at

powering up the ATARI, and directly after loading be executed.

 A bootable program needs a header with specific information about the

program, such as the length and the start address. The header of a bootable

program looks like the following scheme:

Byte Destination

1 unused (0)

2 # of 128bytes sectors

3 Store

4 Address

5 Initialization

6 Address

7

:

:

boot

continuation

code

- The first byte is unused, and should equa1 zero.

- The second byte contains the length of the program, in records (128

bytes length), (rounded up).

- The next word contains the store address of the program.

- The last word contains the initialization-address of the program. This

vector will be transferred tb the CASINI-vector ($02.3).

 After these 6 bytes there has to be the boot continuation code. This is

a short program, the OS will jump to directly after loading. This program

can continue the boot process (multistage boot) or stop the cassette by the

following sequence

LDA #$3C

STA PACTL ; $D302

 The program then allows the DUSVEC ($OA. e) to point to the start

address of the program. It is also possible, to store in MEMLO ($02E7. 8),

the first unused memory address. The continuation code must return to the

OS with C=0 (Carry clear). Now OS jumps via DOSVEC to the application

program.

 So far we know what a bootable cassette looks like, but how do we create

such a bootable tape?

 If there is a program, we only have to put the header in front of it

(including the continuation code) and to save it as nornml data on the

tape. We can use the later described program to write the contents of a

buffer on the tape or the boot generator.

 If the program is saved, we can put the tape in the recorder, press the

yellow START-key, power on the ATARI and press RETURN. Now the program on

the tape will be booted.

 28

The next listing shows us the general outline of a bootable program.

GENERAL OUTLINE OF AN

BOOTABLE PROGRAM

PROGRAM START

ORG $A800 (OR AN OTHER)

* THE BOOTHEADER

PST DFB 0 SHOULD BE 0

DFW PND-PST+127/128 # OF RECORDS

DFW PST STORE ADDRESS

DFW INIT INITALIZATION ADDRESS

* THE BOOT CONTINUATION CODE

LDA #$3C

STA PACTL STOP CASSETTE MOTOR

LDA #PND:L

STA MEMLO

LDA #PND:H

STA MEMLO+1 SET MEMLO TO END OP PROGRAM

LDA #RESTART:L

STA DOSVEC

LDA #RESTART:H

STA DOSVEC+1 SET RESTART VECTOR IN OOSVECTOR

CLC

RTS RETURN WITH C=0 (SUCCESSFULL BOOT)

* INITIALIZATION ADDRESS

INIT RTS RTS IS THE MINIMUM PROGRAM

* THE MAIN PROGRAM

RESTART EQU *

THE MAIN PROGRAM ENDS HERE

PND EQU * NEXT FREE LOCATION

 29

 How to make a bootable disk?

 Making a bootable disk is in fact the same as for the cassette. The only

exceptions are as follows.

 The program (including the header) must be stored up from sector one.

The boot continuation code doesn't need to switch off anything such as the

cassette motor.

 How to create a bootable disk?

 This is only a bit more complicated than the cassette version. We need

our writesector program we described earlier. Then we have to write, sector

by sector, to disk. You can also make a bootable cassette first and then

copy it directly to disk with the later discussed program.

 30

HOW TO MAKE A BOOTABLE CARTRIDGE

CHAPTER 6

 Preparing the program.

 Most of the games and some other programs written in machine language

are stored in a cartridge. Booting a program, the OS recognizes the

cartridge and starts the program.

 What do you have to do when you want to make a bootable cartridge of

your own program ?

As an example we will make a cartridge with a program for testing the

memory. The bit pattern

10101010 = $AA

01010101 = $55

00000000 = $00

11111111 = $FF

is written in every memory location starting above the hardware stack at

address $200. First the content is saved, then the bit pattern is written

into and read from the memory location. If there is any difference in

writing and reading the program prints an error message : ERROR IN <~R> .

Then the program waits in an endless loop. If the error message is ERROR IN

A000, the RAM is ok because $A000 is the first address of the ROM in the

left cartridge.

 The address range for the left cartridge ranges from $A000 to $BFFF and

$8000 to $9FFF for the right cartridge. As starting address for our memory

test program we choose $BF00. This is the last page of the left cartridge.

The software for the EPROM burner is also stored in a cartridge. Therefore

the object code generated by the assembler is stored at $9000.

Like a bootable program the cartridge has a header. The following scheme

shows the outline of this cartridge header.

CARTRIDGE

START ADDRESS
$BFFA or $9FFA

00 -

OPTION BYTE -

CARTRIDGE INIT

ADDRESS
$BFFF or $9FFF

 The header for the right cartridge starts at $9FFA, for the left

cartridge (the more important for us) at $BFFA.

- The first two bytes contain the start address of the cartridge.

- The third byte is the cartridge-ID. It shows the OS that a cartridge has

been inserted. It must be 00.

- The fourth byte is the option-byte. This byte has the following options:

BIT 0 = 0 don't allow diskboot 1 allow diskboot

BIT 2 = 0 only initialize the cartridge 1 initialize and start the

cartridge

 31

BIT 7 = 0 Cartridge is not a diagnostic cartridge

 1 Cartridge is a diagnostic cartridge

before OS is initialized the cartridge takes control

- The last two bytes contain the cartridge initialization address.

 The initialization address is the starting address of a program part

which is executed in advance of the main program. If there is no such a

program this address must be the address of an RTS instruction. In our

example the low byte of the starting address $BF00 is stored in location

$BFFA, the high byte in location $BFFB.

 The option byte in location $BFFD is 04.

 The program in the cartridge is initialized and started, but there is no

disk boot. The initializing address is $BF63, an RTS instruction within the

program.

 After assembling and storing the object code the burning of an EPROM can

start.

GENERAL OUTLINE

OF A CARTRIDGE

* THE CARTRIDGE START (LEFT CARTRIDGE)

 ORG $A000 $8000 FOR RIGHT CARTRIDGE

* THE INITIALIZATION ADDRESS

INIT RTS

* THE MAIN PROGRAM

RESTART EQU *

* THE CARTRIDGE HEADER

 ORG $BFFA $9FFA FOR RIGHT CARTRIDGE

 DFW RESTART

 DFB 0 THE CARTRIDGE ID SHOULD BE ZERO

 DFB OPTIONS THE OPTION BYTE

 DFW INIT THE CARTRIDGE INITIALIZATION ADDRESS

 32

Sample program for a cartridge:

MEMORY TEST

AUXE EPZ $FE

TEST EPZ $F0

OUTCH EQU $F6A4

ORG $BF00,$9000

BF00: A9 7D START LDA #$7D

BF02: 20 A4 F6 JSR OUTCH

BF05: 20 64 BF JSR MESS

BF08: 4D 45 4D ASC \MEMORY TEST\

BF0B: 4F 52 59

BF0E: 205445

BF11: 53 D4

BF13: A0 00 LDY #00

BF15: 84 F0 STY TEST

BF17: A9 02 LDA X02

BF19: 85 F1 STA TEST+1

BF1B: B1 F0 TEST1 LDA (TEST),Y

BF1D: 85 F2 STA TEST+2

BF1F: A9 AA LDA #$AA

BF21: 20 59 BF JSR TST

BF24: A9 55 LDA #$55

BF26: 20 59 BF JSR TST

BF29: A9 00 LDA #00

BF2B: 20 59 BF JSR TST

BF2E: A9 FF LDA #$FF

BF30: 20 59 BF JSR TST

BF33: A5 F2 LDA TEST+2

BF35: 91 F0 STA (TEST),Y

BF37: E6 F0 INC TEST

BF39: D0 E0 BNE TESTl

BF3B: E6 F1 INC TEST+1

BF3D: 18 CLC

BF3E: 90 DB BCC TEST1

BF40: 20 64 BF FIN JSR MESS

BF43: 45 52 52 ASC \ERROR IN \

BF46: 4F 52 20

aF49: 49 4E A0

BF4C: A5 F1 LDA TEST+1

BF4E: 20 86 BF JSR PRTBYT

BF51: A5F0 LDA TEST

RF53: 20 86 BF JSR PRTBYT

BF56: 4C 56 BF FINI JMP FINI

 33

BF59: 85 F3 TST STA TEST+3

BF5B: 91 F0 STA (TEST),Y

BF5D: B1 F0 LDA (TEST),Y

BF5F: C5 F3 CMP TEST+3

BF61: D0 D0 BNE FIN

BF63: 60 FRTS RTS

BF64: 68 MESS PLA

BF65: 85 FE STA AUXE

BF67: 68 PLA

BF68: 85 FF STA AUXE+1

BF6A: A2 00 LDX #0

BF6C: E6 FE MS1 INC AUXE

BF6E: D0 02 BNE *+4

BF70: D6 FF INC AUXE+1

BF72: A1 FE LDA (AUXE,X)

BF74: 29 7F AND #$7F

BF76: 20 A4 F6 JSR OUTCH

BF79: A2 00 LDX #0

BF7B: Al FE LDA (AUXE,X)

BF7D: l0 ED BPL MS1

BF7F: A5 FF LDA AUXE+1

BF81: 48 PHA

BF82: A5 FE LDA AUXE

BF84: 48 PHA

BF85: 60 RTS

BF86: 48 PPRTBYT PHA

BF87: 4A LSR

BF88: 4A LSR

BF89: 4A LSR

BF8A: 4A LSR

BF8B: 20 91 BF JSR HEX21

BF8E: 68 PLA

BF8F: 29 0F AND #$OF

BF91: C9 0A HEX21 CMP #9+1

BF93: B0 04 BCS BUCHST

BF95: 09 30 ORA '0

BF97: D0 03 BNE HEXOUT

BF99: 18 BUCHSST CLC

BF9A: 69 37 ADC: 'A-10

BF9C: 4C A4 F6 HEXOUT JMP OUTCH

ORG $BFFA, $90FA

BFFA: 00 BF DFW START

BFFC: 00 DFB 00

BFFD: 04 DFB 04

BFFE: 63 BF DFW DRTS

PHYSICAL ENDADDRESS: $9100

*** NO WARNINGS

 34

EPROMBURNER FOR THE ATARI 800 / 400

 With this epromburner you can burn your EPROMS. It is possible to burn

four different types. The four types are the 2532(4k), the 2732(k),the

2516(2k) and the 2716 (2k). The burner uses the game ports 1, 2 and 3.

1) THE HARDWARE

 The circuit of the epromburner is shown in FIG.1.The data for the burner

is exchanged via game port 1 and 2. The control signals are provided by

game port 3. The addresses are decoded by two 7 bit counters 4024. The

physical addresses for the EPROMS are always in the range of 0000 to 07FF

for 2k and 0000 to 0FFF for 4k. This counter is reset by a signal, decoded

from PB0 and PB1 via the 74LS139. PB2 is used to decide if a 2532, or a

2716 has to be burned.

 Not all signals for the different types of EPROMS are switched by
software. A three pole, double throw switch is used to switch between the

different types. The software tells you when you have to set the switch

into the correct position. For burning, you need a burn voltage of 25

Vo1ts. This voltage is converted from the 5 Volts of the game port to 28

Volts by the DCDC converter DCP528. This voltage is limited to 25 Volts by
two Zener diodes in serie (ZN24 and ZN1). Three universal NPN transistors

are used to switch between low level voltages and the high level of the

burning voltage.

Fig.1 Eprom burner schematic

3) THE SOFTWARE

The software for the burner is completely written in machine code. It comes

on a bootable diskette. To load the program, insert the disk and REMOVE ALL

CARTRIDGES. Turn on the disk drive and the ATARI. After a short moment, you

will see the first menu:

 35

WHICH EPROM DO YOU WANT TO BURN?

A) 2532

B) 2732

C) 2716, 2516

 WHAT:

 You are asked what type of EPROM you want to burn. After typing the

apriopriate character, you get the message to set the switch to the correct

position and insert the EPROM. This is shown in the following example:

WHICH EPROM DO YOU WANT TO BURN?

D) 2532

E) 2732

F) 2716, 2516

 WHAT:

SET SWITCH TO POSITION 2532

NOW INSERT EPROM

 PRESS SPACE BAR

-
Then, pressing the space bar, you see the main menue:

 R)EAD EPROM

 W)RITE EPROM

 E)PROM ERASED

V)ERIFY PROGRAM

M)EMORY DUMP

 R)AM

 E)PROM

S)ET EPROM TYPE

 WHAT:

 36

 First we want to R)EAD an EPROM. Type R and then the addresses FROM

and TO. The physical addresses of the EPROM are always in range between

0000 and 0FFF. You can read the whole EPROM or only a part of it. Next

you to type the address INTO which the content of the EPROM is read. All

addresses which are not used by the system or the burner software (A800

to AFFF) are accessible. By typing Y after the question OK (Y/N), the

program is loaded. There is a very important key, X key. This key cancels

tlhe input and leads back to the main menue. An example of reading an

EPROM is shown in the next figure:

 R)EAD EPROM

 W)RITE EPROM

 E)PROM ERASED

V)ERIFY PROGRAM

M)EMORY DUMP

 R)AM

 E)PROM

S)ET EPROM TYPE

 WHAT:

 EPROM FROM:0000

 TO :0FFF

 RAM INTO:5000

 OK. (Y/N)

 To verify that the content of the RAM is identical the content of the

EPROM, type V. After specifing addresses for the EPROM and the RAM and

typing Y, the contents are compared. If there are any differences you

get an error message, such as the following:

 R)EAD EPROM

 W)RITE EPROM

 E)PROM ERASED

V)ERIFY PROGRAM

M)EMORY DUMP

 R)AM

 E)PROM

S)ET EPROM TYPE

 WHAT:

 EPROM FROM:0000

 TO :0FFF

 RAM INTO:5000

 OK. (Y/N)

 DIFFERENT BYTES FF 00 IN 5000

 PRESS SPACE BAR

 You may then make a memory dump. Type M for M)EMORY, either R for R)AM

or E for E)PROM, and the address range. There is a slight difference in

memory dumps. With the memory dump of RAM, , the bytes are printed, if a is

possible, as ASCII characters.

 Burning an EPROM begins by testing as to whether or not the EPROM is

erased in the address range you want to burn. Type E and the address

range. You will get the message EPROM ERASED when the assigned address

range has been erased, or the message EPROM NOT ERASED IN CELL NNN.

 37

 For writing the EPROM, type W, the address range in RAM, and the

starting address in EPROM. After hitting Y, you have to wait two minutes

for burning 2k and four minutes for burning 4k. Don't get angry, the

program will stop. After burning one cell the program does an automatic

verify. If there is a difference you receive the error message EPROM NOT

PROGRAMMED IN CELL NNN and the burning stops. Otherwise if all goes well

the message EPROM PROGRAMMED is printed.

 For changig the type of EPROM you want to burn, type S. The first menue

is shown and you can begin a new burning procedure.

PARTS LIST.

IC1 74LS139

IC2,IC3 4024

IC4 4016

IC5 4049

T1,T2,T3 UNIVERSAL NPN TRANSISTOR 30V, 0.3W (2N3390 – 2N3399)

 Rl 470K RESISTOR

 R2,R3 10K RESISTOR

 R4,R5 33K RESISTOR

 Z1 1V ZENER DIODE

 Z2 24V ZENER DIODE

 Ml DCP528 DCDC CONVERTER ELPAC POWER SYSTEMS

 C1,C2 100nF CAPACITOR

 C3 10uF TANTAL CAPACITOR

 S1 3P2T SWITCH

 1 24PIN TEXTOOL SOCKET

 3 14PIN IC SOCKET

 2 16PIN IC SOCKET

3 FEMALE PLUGS, ATARI GAME CONNECTORS

5) STEP BY STEP ASSEMBLING.

 1. Insert and solder sockets.

 * Component side shows the text EPROMBURNER.

 2. Insert and solder resistors.

 3. Insert and solder Zener diodes.

 * The anodes are closest to the transistors.

 4. Insert and solder transistors.

 5. Insert and solder capacitors.

 * The + pole of the tantal is marked.

 6. Mount the DCDC converter module.

 7. Turn the board to the soldering side.

 8. Insert from this side the TEXTOOLL socket.

 * The knob should be in the upper right corner.

* Solder the socket.

 9. Make the connections on the switch. (FIG.5)

 * Connect switch and board via a 7 lead flatband cable.

 l0. Connect the plugs to the board. (FIG.5)

 11. Insert the integrated circuits. (FIG.2)

 12. Turn off the ATARI. Insert the plugs.

 38

 * Insert the diskette and turn on the ATARI.

HEXDUMP of the EPROM BURNER software

A800 2076A9204CA82078 v) L(x

A808 A8006885EE6885EF (@hEnhEo

A810 A200E6EED002E6EF "@fnPBfo

A818 A1EE297F20A4F6A2 !n) $v"

A820 00A1EE10EDA5EF48 @!nPm%oH

A828 A5EE4860A5FD2940 %nH'%)@

A830 F006A5FE0901D004 pF% IAPD

A838 A5FE290E8D01D348 %)NMASH

A840 68AD00D348A5FE8D h-@SH% M

A848 01D36860A90085F0 ASh')@Ep

A850 85F185F8A9308D03 EqEx)0NC

A858 D3A90F8D01D385F5 S)OMASEu

A860 A9348D03D3A9FF85)4MCS) E

A868 F4A9B085F9A9028D t)0Ey)BM

A870 01D360A99B4CA4F6 AS')[L$v

A878 A97D20A4F6A90585) $v)EE

A880 54A90A8555A90085 T)JEU)@E

A888 56200AA852294541 V J(R)EA

A890 44204550524FCD20 D EPROM

A898 73A8A90A8555200A s()JEU J

A8A0 A857295249544520 (W)RITE

A8A8 4550524FCD2073A8 EPROM s(

A8B0 A90A8555200AA845)JEU J(E

A8B8 2950524F4D204552)PROM ER

A8C0 415345C42073A8A9 ASED s()

A8C8 0A8555200AA85629 JEU J(V)

A8D0 4552494659205052 ERIFY PR

A8D8 4F475241CD2073A8 OGRAM s(

A8E0 A90A8555200AA84D)JEU J(M

A8E8 29454D4F52592044)EMORY D

A8F0 554DD02073A8A90D UMP s()M

A8F8 8555200AA8522941 EU J(R)A

A900 CD2073A8A90D8555 M s()MEU

A908 200AA8452950524F J(E)PRO

A910 CD2073A8A90A8555 M s()JEU

A918 200AA85329455420 J(S)ET

A920 4550524F4D205459 EPROM TY

A928 50C52073A82073A8 PE s(s(

A930 A90A8555200AA857)JEU J(W

A938 484154BA20F0AE48 HAT: p.H

A940 20A4F668C952D003 $vhIRPC

 39

A948 4C30ACC957D0034C L0,IWPCL

A950 10ADC945D0034C8B P-IEPCLK

A958 ACC956D0034C2DAF ,IVPCL-/

A960 C953D0034C76A9C9 ISPCLv)I

A968 4DD0034CFBADA9FD MPCL{-)

A970 20A4F66C0A00A97D Sv1J@)

A978 20~A4F62073A8200A $v s(J

A980 A857484943482045 (WHICH E

A988 50524F4D20444F20 PROM DO

A990 594F552057414E54 YOU WANT

A998 20544F204255524E TO BURN

A9A0 20BFA9088554A90A ?)HET)J

A9A8 8555200AA8412920 EU J(A)

A9B0 323533B22073A8A9 2532 s()

A9B8 0A8555200AA84229 JEU J(B)

A9C0 20323733B22073A8 2732 s(

A9C8 A90A8555200AA843)JEU J(C

A9D0 2920323731362032) 2716,2

A9D8 3531B62073A82073 516 s(s

A9E0 A8A90A8555200AA8 ()JEU J(

A9E8 57484154BA20F0AE WHAT: p.

A9F0 4820A4F66885FCC9 H $vhE|I

A9F8 41D006A90085FDF0 APF)@E p

AA00 12C942D006A98085 RIBPF)@E

AA08 FD3008C943D078A9 0HICPx)

AA10 C085FD2073A82073 @E s(s

AA18 A8200AA853455420 (J(SET

AA20 5357495443482054 SWITCH T

AA28 4F20504F53495449 O POSITI

AA30 4F4EA0A5FCC941D0 ON %|IAP

AA38 0A200AA8323533B2 J J(2532

AA40 18901EC942D00A20 XP^IBPJ

AA48 0AA8323733B21890 J(2732XP

AA50 10C943D032200AA8 PICP2 J(

AA58 3237313620323531 2716,251

AA60 B62073A82073A8A9 6 s(s()

AA68 0A8555200AA84E4F JEU J(NO

AA70 5720494E53455254 W INSERT

AA78 204550524FCD20D7 EPROM W

AA80 AB208FAA4C03A8A9 + O*LC()

AA88 FD20A4F64CEDA920 $vLm)

AA90 73A8A90A8555200A s s()JEU J

AA98 A850524553532053 (PRESS S

AAA0 50414345204241D2 PACE BAR

AAA8 20F0AE602073A8A9 p.' s()

AAB0 0A8555200Ą.A84F4B JEU J(OK

AAB8 2028592F4EA920F0 (Y/N) p

AAC0 AE4820A4F668C94E .H $vhIN

 40

AAC8 F003A90060A90160 pC)@')A'

AAD0 484A4A4A4A20DBAA HJJJJ [*

AAD8 68290FC90AB00409 h)OIJ0DI

AAE0 30D0031869374CA4 0PCXi7L$

AAE8 F6A90085F285F385 v)@ErEsE

AAF0 FEA90485FC20F0AE)DE| p.

AAF8 48C99BF00320A4F6 HI[pC $v

AB00 68C9303025C94710 hI00%IGP

AB08 21C93A3007C94130 !I:0GIA0

AB10 191869090A0A0A0A YXiIJJJJ

AB18 A0042A26F226F388 D*&r&sH

AB20 D0F8A98085FEC6FC Px)@E F|

AB28 D0CB60A9308D02D3 PK')0MBS

AB30 A9FF8D00D3A9348D) M@S)4M

AB38 02D360A9308D02D3 BS')0MBS

AB40 A9008D00D3A9348D)@M@S)4M

AB48 02D3602073A820FD BS’ s(

AB50 AEA90A8555200AA8 .)JEU J(

AB58 46524F4DBA20E9AA FROM: i*

AB60 A5FE300DA5F120D0 % 0M%q P

AB68 AAA5F020D0AA4C79 *%p P*Ly

AB70 ABA5F285F0A5F385 +%rEp%sE

AB78 F12073A8A90A8555 q s()JEU

AB80 200AA8544F2020BA J(TO :

AB88 20E9AAA5FE300DA5 i*% 0M%

AB90 F520D0AAA5F420D0 a P*%t P

AB98 AA4CA4ABA5F285F4 *L$+%rEt

ABA0 ASF385F5A5FB302E %sEu%{0.

ABA8 2073A82015AFA90A s(U/)J

ABB0 8555200AA8494E54 EU J(INT

ABB8 4FBA20E9AAA5FE30 O: i*% 0

ABC0 0DA5F920D0AAA5F8 M%y P*%x

ABC8 20D0AA4CD6ABA5F2 P*LV+%r

ABD0 85F8A5F385F960A9 Ex%sEy')

ABD8 0185FEA90385FCA9 AE)CE|)

ABE0 0985FFA5FD1021A9 IE % P!)

ABE8 041865FE85FEA904 DXe E)D

ABF0 1865FC85FCA90418 Xe|E|)DX

ABF8 65FF85FFA5FD2940 e E %)@

AC00 F006A5FE290F85FE pF%)OE

AC08 60A5F085F2A5F185 %pEr%qE

AC10 F3A5F2D002A5F3F0 s%rPB%sp

AC18 16A5FC8D01D3A5FE V%|MAS%

AC20 8D01D3C6F2A5F2C9 MASFr%rI

AC28 FFD0E6C6F310E260 PfFsPb'

AC30 A98085FAA90085FB)@Ez)@E{

AC38 203BAB204BAB20AC ;+ K+ ,

AC40 AAD0F820D7AB2009 *Px W+ I

 41

AC48 ACA000202CA891F8 , @ ,(Qx

AC50 A5F1C5F59004A5F0 %qEuPD%p

AC58 C5F4F019E6F0D002 EtpYfpPB

AC60 E6F1E6F8D002E6F9 fqfxPBfy

AC68 A5FC8D01D3A5FE8D %|MAS% M

AC70 01D31890D42073A8 ASXPT s(

AC78 A90A8555200AA84C)JEU J(L

AC80 4F414445C4208FAA OADED O*

AC88 4C03A8A98085FB85 LC()@E{E

AC90 FA203BAB204BAB20 z ;+ K+

AC98 ACAAD0F820D7AB20 ,*Px W+

ACA0 09ACA000202CA8C9 I, @ ,(I

ACA8 FFD039A5F1C5F590 P9%qEuP

ACB0 04A5F0C5F4F013E6 D%pEtpSf

ACB8 F0D002E6F1A5FC8D pPBfq%|M

ACC0 01D3A5FE8D01D318 AS% MASX

ACC8 90D82073A8A90A85 PX s()JE

ACD0 55200AA845524153 U J(ERAS

ACD8 45C4208FAAA90085 ED O*)@E

ACE0 FB4C03A82073A8A9 {LC(s()

ACE8 0A8555200AA84E4F JEU J(NO

ACF0 5420455241534544 T ERASED

ACF8 20494EA0A5F12UD0 IN %q P

AD00 AAA5F020D0AA208F *%p P* O

AD08 AAA90085FB4C03A8 *)@E{LC(

AD10 A90085FB85FA202B)@E{Ez +

AD18 AB204BAB20ACAAD0 + K+ ,*P

AD20 F820D7ABA5F885F2 x W+%xEr

AD28 A5F985F32011ACA0 %yEs Q,

AD30 00B1F08D00D320A9 @lpM@S)

AD38 ADA5F1C5F59004A5 -%qEuPD%

AD40 F0C5F4F013E6F0D0 pEtpSfpP

AD48 02E6F1A5FC8D01D3 Bfq%|MAS

AD50 A5FE8D01D31890D7 % MASXPW

AD58 2073A8A90A855520 s()JEU

AD60 0AA850524F475241 J(PROGRA

AD68 4D4D45C4208FAA4C MMED O*L

AD70 03A82073A8A90A85 C(s()JE

AD78 55200AA843454C4C U J(CELL

AD80 A0A5F120D0AAASF0 %q P*%p

AD88 20D0AA200AA8204E P* J(N

AD90 4F542050524F4752 OT PROGR

AD98 414D4D45C4208FAA AMMED O*

ADA0 4C03A8A0FF88D0FD LC(HP

ADA8 60A5FF8D01D320A3 '% MAS #

ADB0 AD290E8D01D34820 -)NMASH

ADB8 DDAD6809018D01D3]-hIAMAS

ADC0 A5FE8D01D320A3AD % MAS #-

 42

ADC8 203BAB202CA8A000 ;+ ,(@

ADD0 D1F0F00568684C72 QppEhhLr

ADD8 AD202BAB60A9FF85 - ++') E

ADE0 F6A90B85F7A5F6D0 v)Kew%vP

ADE8 02A5F7F00DC6F6A5 B%wpMFv%

ADF0 F6C9FFD0F0C6F718 vI PpFwX

ADF8 90EB6020F0AE4820 Pk' p.H

AE00 A4F668C952D006A9 $vhIRPF)

AE08 0085FAF012C945D0 @EzpRIEP

AE10 06A98085FA3008A9 F)@EzOH)

AE18 FD20A4F64CFBAD20 $vL{-

AE20 3BABA98085FB204B ;+)@£{ K

AE28 AB20ACAAD0F820D7 + ,*Px W

AE30 A82037AE4C03A8A5 + 7.LC(%

AE38 FA10032009ACA97D zPC I,)

AE40 20A4F6A90085F620 $v)@Ev

AE48 73A8A90085F7A5F1 s()@Ew%q

AE50 85F320D0AAA5F085 Es P*%pE

AE58 F220D0AA20DBAEAS r P* [.%

AE60 FA100620E0AE1890 zPF '.XP

AE68 04A000B1F020D0AA D @1p P*

AE70 E6F7A5F7C908F00B fw%wIHpK

AE78 20DBAEE6F0D002E6 [.fpPBf

AE80 F1D0DCA90085F720 qP\)@Ew

AE88 DBAEA5FA3021A000 [.%z0! @

AE90 B1F2C9209004C97A 1rI PDIz

AE98 9002A92E20A4F6E6 PB). $vf

AEA0 F7A5F7C908F008E6 w%wIHpHf

AEA8 F2D002E6F3D0DBAS rPBfsP[%

AEB0 F1C5F59004A5F0C5 qEuPD%pE

AEB8 F49006208FAA4C03 tPF O*LC

AEC0 A8E6E0D002E6F1E6 (fpPBfqf

AEC8 F6A5F6C914F0034C v%vITpCL

AED0 47AE208FAA20D7AB G. O* W+

AED8 4C3EAEA9204CA4F6 L>.) L$v

AEE0 202CA848A5FC8D01 ,(H%|MA

AEE8 D3A5FE8D01D36860 S% MASh'

AEF0 20E2F6C958D00568 bvIXPEh

AEF8 684C03A860A90485 hLC(‘)DE

AF00 55A5FA1009200AA8 U%zPI J(

AF08 4550524FCD60200A EPROM' J

AF10 A85241CD60A90485 (RAM')DE

AF18 55A5FA1007200AA8 U%zPG J(

AF20 5241CD60200AA845 RAM' J(E

AF28 50524FCD60A98085 PROM')@E

AF30 FAA90085FB203BAB z)@E{ ;+

AF38 204BAB20ACAAD0FB K+ ,*Px

AF40 20D7AB2009ACA000 W+ I, @

 43

AF48 202CA848D1F8D03E ,(HQxP>

AF50 68A5F1C5F59004A5 h%qEuPD%

AF58 F0C5F4F019E6F0D0 pEtpYfpP

AF60 02E6F1E6F8D002E6 BfqfxPBf

AF68 F9A5FC8D01D3A5FE y%|MAS%

AF70 8D01D31890D02073 MASXPP s

AF78 A8A90A8555200AA8 () JEU (

AF80 5645524946494504 VERIFIED

AF88 208FAA4C03A82073 O*LC(s

AF90 A8200AA844494646 (J(DIFF

AF98 4552454E54204259 ERENT BY

AFA0 544553A06820D0AA TES h P*

AFA8 20DBAEA000B1F820 [. @lx

AFB0 D0AA200AA820494E P* J(IN

AFB8 A0A5F920D0AAA5F8 %y P*%x

AFC0 20D0AA208FAA4C03 P* 0*LC

AFC8 A800000000000000 (@@@@@@@

 This hexdump has to be keyed in starting at address A800. This

means you need a 48K RAM ATARI and a machine language monitor

(ATMONA-1, Editor/Assembler cartridge from ATARI or ATMAS-1). The

program starts at address A800 hex.

Using the EPROM board Kit from HOFACKER

 After you burned an EPROM you certainly want to plug it into your

ATARI. for this you need a pc-board. You can buy those boards from

various vendors (APEX, ELCOMP PUBLISHING).

 The following description shows how to use the EPROM board from ELCOMP

PUBLISHING, INC.

 With this versatile ROM module you can use 2716, 2732 and 2532 type

EPROMs.

 To set the board for the specific EPROM, just solder their jumpers

according to the list shown below. Without any soldering you can use the

module for the 2532 right away.

If you use only one EPROM, inxrt it into the right socket.

 If you use two EPROMs, put the one with the higher address into the right

socket.

The modul must be plugged into the left slot of your ATARI computer with

the parts directed to the back of the computer.

EPROM 2716 2732 2516 2532

1 S O S S

2 O S O O

3 S S S O

4 O O O S

5 O S O O

 44

S = means connected (short)

O = means open

HOW TO ADD OR CHANGE A DEVICE

CHAPTER 7

 If you want to add your own device, you first have to write a

handler/controller (interface). You have to submit the handler on the

following design decisions.

- There has to be an OPEN routine, which opens the device/file and returns

with the status of these operations stored in the Y-register of your

6502.

- You also need a CLOSE routine, which unlinks the device and returns the

status as the OPEN-routine does.

- Further needed is a GETBYTE routine, which receives the data from your

device and returns the data in the A-register and the status in the Y-

register. If your device is a write only device (such as a printer) you

have to return with errorcode 146 (not implemented function) in the Y-

register.

- A PUTBYTE routine, sends a byte (which will be in the A-register) to

your device, and returns, as the other routines do, the status. If your

device is read only, then return the 146 errorcode.

- A GET STATUS routine stores the status of your device (max. 4 bytes) at

DVSTAT ($02EA. D). If the GET STATUS function is not necessary, you have

to leave the dummy routine . with 146 in your Y-register (error).

- A SPECIAL COMMAND routine is required, if you need more commands than

previous. If not, return with Y=146.

 OS will load the X-register with the IOCB number times 16 so you are

able to get specific file information out of the user IOCB.

 These 6 entries have to be placed in a so called handlertable. The

vectors of these have to be one less than the real address, due to OS

requirements.

OPEN vector - 1

CLOSE vector – 1

GETBYTE vector – 1

PUTBYTE vector – 1

GETSTAT vector – 1

SPECIAL vector - 1

 Now you have to add the device to the device table. A device entry needs 3 bytes. The device name, which is

usually character that indicates the device (first character of the full devicename) is first. Second, a vector that

points to the devicehandler.

device name

handler table

address

 45

 If you only want to change the handler of a device to your own handler, you only have to scan the devicetable

(started from $031A) and let the vector point to your handler table.

 If 'it is a totally new device, you have to add it, at the next free position of the device table (filled with zero).

 The first listing shows you a handler for a new printer device. Calling INITHAN will install the new handler-

table. Now you can connect a printer with centronics interface at gameport 3 & 4 (see connection scheme). After

each SYSTEM RESET you have to initialize the device again. For program description see program listing.

 The second listing is a listing of an inexpensive (write only) RS232 interface for your ATARI. Just call

INITHAN and the new device will be added to the device table. It is now possible to use it like any other device.

The RS232 output is on gameport 3 (see connection scheme). It is not our intention to describe detail the

working of the RS232 interface. The comments in the program should help a bit though.

CENTRONICS PARALLEL INTERFACE

PRTENTRY EQU$031A STANDARD ENTRY BY SYSTEM

TRIG3 EQU $D013

PACTL EQU $D303

PORTA EQU $D3C1

EOL EQU $9B

CR EQU $0D

LF EQU $0A

ORG $0600, $A800

* THE HANDLERTABLE

0600: 0F 06 HANDLTAB DFW OPEN-1

0602: 23 06 DFW CLOSE-1

0604: 26 06 DFW GETBYTE-1

0606: 29 06 DFW PUTBYTE-1

0608: 26 06 DFW STATUS-1

060A: 26 06 DFW SPECIAL-1

060C: 00 00 00 DFB 0,0,0,0 FILL REST WITH ZER0

060F: 00

* THE OPEN ROUTINE

OPEN EQU *

0610: A930 INIT LDA #$30

0612: 8D 03 D3 STA PACTL

0615: A9 FF LDA #$FF

0617: 8D 01 D3 STA PORTA

061A: A9 34 LDA #$34

061C: BD 03 D3 STA PACTL

061F: A9 80 LDA #$80

0621: 8D 01 D3 STA $D301

0624: A0 01 SUCCES LDY #1

0626: 60 RTS

* THE CLOSE DUMMY ROUTINE

* ONLY RETURN SUCCESS IN Y (1)

 46

CLOSE EQU SUCCES

0627: A0 92 NOTIMPL LDY #146

0629: 60 RTS

* THE POLLOWING COMMANDS ARE

* NOT IMPLEMENTED SO GET ERROR

* CODE 116

GETBYTE EQU NOTIMPL

STATUS EQU NOTIMPL

SPECIAL EQU NOTIMPL

* THE PUTBYTE ROUTINE 1

062A: C9 9B PUTBYTE CMP #EOL

062C: D0 07 BNE NOEOL

* IF EOL THEN CRLF TO PRINTER

062E: A9 0D LDA #CR

0630: 20 3B 06 JSR PARAOUT

0633: A9 0A LDA #LF

0635: 20 3B 06 NOEOL JSR PARAOUT

0638: A0 01 LDY #1

063A: 60 RTS

* TBE PARALLEL OUT

0636: AC 13 D0 PARAOUT LDY TRIG3

063E: D0P B BNE PARAOUT WAIT IF BUSY

0640: A0 80 LDY #%10000000

0642: 09 80 ORA #%10000000

0644: 8D 01 D3 STA PORTA STROBE ON AND PUT DATA ON BUS

0647: 297F AND #%01111111

0649: 8D 01 D3 STA PORTA STROBE OFF

061C: 8C 01 D3 STY PORTA CLEAR BUS

061P: 60 RTS

* PUT NEW ADDRESS IN HANDLER VECTOR

0650: A9 00 INITHAN LDA #HANDLTAB:L

0652: 8D 1B 03 STA PRTENTRY+1

0655: A90 6 LDA #HANDLTAB:H

0657: 8D1C03 STA PRTENTRY+2 '

065A: 4C1006 JMP OPEN

PHYSICAL ENDADDRESS: $A85D

*** NO WARNINGS

PRTENTRY $031A TRIG3 $D013

PACTL $D303 PORTA $D301

EOL $9B CR $0D

LP $0A HANDLTAB $0600

OPEN $0610 INIT $0610 UNUSED

SUCCES $0621 CLOSE $0624

NOTIMPL $0627 GETBYTE $0627

STATUS $0627 SPECIAL $0627

PCTBYTE $062A NOEOL $0635

 47

PARAOUT $0638 INITHAN $0650 UNUSED

For more information about the parallel interface refer to Page 70.

RS 232 SERIAL INTERFACE

COUNT EPZ $1F

RSENTRY EQU $032C NEXT FREE POSITION IN

 DEVICE TABLE

PACTL EQU $D303

PORTA EQU $D301

NMIEN EQU $D40E

DMACTL EQU $D400

EOL EQU $9B

CR EQU $0D

LF EQU $0A

K EQU 150 110 AND 300 BAUD

L EQU 6 300 BAUD

*L EQU 18 110 BAUD

ORG $0600,$A800

0600: 0F 06 HANDLTAB DFW OPEN-1

0602: 29 06 DFW CLOSE-1

0604: 2C 06 DFW GETBYTE-1

0606: 2F 06 DFW PUTBYTE-1

0608: 2C 06 DFW STATUS-1

060A: 2C 06 DFW SPECIAL-1

060C: 00 00 00 DFB 0,0,0,0 JUST FILL WITH ZERO

060F: 00

* THE OPEN ROUTINE

OPEN EQU *

0610: A9 30 INIT LDA 1530

0612: 8D 03 D3 STA PACTL

0615: A9 01 LDA #%00000001

0617: 8D 01 D3 STA PORTA

061A: A9 34 LDA 1534

061C: 8D 03 D3 STA PACTL

061F: A9 00 LDA 1500

0621: 8D 01 D3 STA PORTA

0624: 20 85 06 JSR BITWAIT

0627: 20 85 06 JSR BITWAIT

062A: A0 01 SUCCES LDY #1

062C: 60 RTS

* THE CLOSE ROUTINE IS A DUMMY

 48

* BUT Y#1 (SUCCESSFULL CLOSE)

CLOSE EQU SUCCES

062D: A0 92 NOTIMPL LDY #146 RETURN WITH Y=116

062F: 60 RTS

* THE FOLLOWING COMMANDS ARE NOT IMPLEMENTED

GETBYTE EQU NOTIMPL

STATUS EQU NOTIMPL

SPECIAL EQU NOTIMPL

* THE PUTBYTE COMMAND

* DATA IN ACCU

* STATUS IN Y (=1)

0630: 48 PUTBYTE PHA

0631: C9 98 CMP #EOL

0633: D0 07 BNE NOEOL

* IF EOL GIVE CRLF TO DEVICE

0635: A9 0D LDA #CR

0637: 20 43 06 JSR SEROUT

063A: A9 0A LDA #LF

063C: 20 43 06 NOEOL JSR SEROUT

063F: 68 PLA

0640: A0 01 LDY #1

0642: 60 RTS

* SERIALOUT FIRST REVERSE BYTE

0643: 49 FF SEROUT EOR #%llllllll

0645: 8D A2 06 STA BUFFER

* DISABLE INTERRUPTS

0648: 78 SEI

0649: A9 00 LDA #0

0648: 8D 0E D4 STA NMIEN

064E: BD 00 D4 STA DMACTL

* SEND STARTBIT

0651: A9 01 LDA #%00000001

0653: BD 01 D3 STA PORTA

0656: 20 85 06 JSR BITWAIT

* SEND BYTE

 49

0659: A0 08 LDY #8

065B: 84 1F STY COUNT

065D: AD A2 06 SENDBYTE LDA BUFFER

0660: BD 01 D3 STA PORTA

0663: 6A ROR

0664: BD A2 06 STA BUFFER

0667: 20 85 06 JSR BITWAIT

066A: C6 1F DEC COUNT

066C: D0 EF BNE SENDBYTE

* SEND TWO STOPBITS

066E: A9 00 LDA #%00000000

0670: BD 01 D3 STA PORTA

0673: 20 85 06 JSR BITWAIT

0676: 20 85 06 JSR BITWAIT

* ENABLE INTERRUPTS

0679: A9 22 LDA #$22

067B: BD 00 D4 STA DMACTL

067E: A9 FF LDA #$FF

0680: BD 0E D4 STA NMIEN

0683: 58 CLI

0684: 60 RTS

* THE BITTIME ROUTINE FOR AN EXACT BAUDRATE

0685: A2 96 BITWAIT LDX #K

0687: A0 06 LOOPR LDY #L

0689: 88 LOOPL DEY

068A: D0 FD BNE LOOPL

068C: CA DEX

068D: DO FB BNE LOOPR

068F: 60 RTS

* ROUTINE FOR INSTALLING THE RS232 HANDLER

0690: A9 52 INITHAN LDA 'R DEVICE NAME

0692: BD 2C 03 STA RSENTRY

0695: A9 00 LDA #HANDLTAB:L

0697: 8D 2D 03 STA RSENTRY+1

069A: A9 06 LDA #HANDLTAB:H

069C: 80 2E 03 STA RSENTRY+2

069F: 4C 10 06 JMP OPEN

BUFFER EQU * ONE BYTE BUFFER

 50

PHYSICAL END ADDRESS: $A8A2

*** NO WARNINGS

COUNT $1F RSENTRY $032C

PACTL $D303 PORTA $D301

NMIEN $D40E DMACTL $D400

EOL $98 CR $OD

LF $0A K $96

L $06 HANDLTAB $0600

OPEN $0610 INIT $0610 UNUSED

SUCCES $062A CLOSE $062A

NOTIMPL $062D GETBYTE $062D

STATUS $062D SPECIAL $062D

PUTBYTE $0630 NOEOL $063C

SEHUUT $0643 SENDBYTE $065D

BITWAIT $0685 LOOPK $0687

LOOPL $0689 INITHAN $0690 UNUSED

BUFFER S06A2

 51

A BOOTABLE TAPE GENERATOR PROGRAM

CHAPTER 8

 The following program allows you to generate a bootable program on tape.

This generator must be in memory at the same time as the program.

 After you have jumped to the generator, a dialogue will be started.

First, the boot generator asks for the address where your program is stored

(physical address). After you have entered start and end address

(physical), you will be asked to enter the address where the program has to

be stored during boot (logical address). The generator further asks for the

restart address (where OS must jump to, to start your program).

 There is no feature to define your own initialization address. This

address will be generated automatically and points to a single RTS.

 Also given is the boot continuation code, which will stop the cassette

motor, and store the restart address into DOSVEC ($0A.B).

 So, you just have to put a cassette in your recorder, start the

generator, and the dialogue will be started.

 The generator puts the boot information header in front of your program,

so there have to be at least 31 free bytes in front of the start address

(physical & logical).

The generator program will not be explained here, but after reading the

previous chapters you should have the knowledge to understand it. There are

also some helpfull comments in the program.

BOOT – GENERATOR

STOREADR EPZ $F0.1

ENDADR EPZ $F2.3

PROGLEN EPZ $F4.5

JMPADR EPZ $F6.7

EXPR EPZ $F8.9

LOGSTORE EPZ $FA.B

HEXCOUNT EPZ $FC

DOSVEC EPZ $0A

MEMLO EPZ $02E7

ICCOM EQU $0342

ICBAL EQU $0344

ICBAH EQU $0345

ICBLL EQU $0348

ICBLH EQU $0349

ICAX1 EQU $034A

ICAX2 EQU $034B

 52

OPEN EQU $03

PUTCHR EQU $0B

CLOSE EQU $0C

OPNOT EQU 8

SCROUT EQU $F6A4

GETCHR EQU $F6DD

BELL EQU $F90A

CIOV EQU $E456

PACTL EQU $D302

CLS EQU $7D

EOL EQU $9B

BST EQU $1E

CR EQU $0D

IOCBNUM EQU 1

ORG $A800

A800: A9 7D START LDA #CLS

A802: 20 A4 F6 JSR SCROUT

* PRINT MESSAGE

A805: 20 00 AA JSR PRINT

A808: 0D 0D DFB CR,CR

A80A: 42 4F 4F ASC \BOOTGENERATOR FROM HOFACKER\

A80D: 54 47 45

A810: 4E 45 52

A813: 41 54 4F

A816: 52 20 46

A819: 52 4F 4D

A81C: 20 48 4F

A81F: 46 41 43

A822: 4B 45 D2

 * GET STOREADDRESS

 A825: 20 00 AA JSR PRINT

 A828: 0D 0D DFB CR,CR

 A82A: 53 54 4F ASC \STOREADDRESS :$\

 A82D: 52 45 41

 A830: 44 44 52

 A833: 45 53 53

 A836: 20 3A A4

 A839: 20 28 AA JSR HEXIN

 A83C: 89 F0 STY STOREADR

 A83E: 85 F1 STA STOREADR+1

 53

* GET ENDADDRESS

A840: 20 00 AA JSR PRINT

A843: 0D 0D 0D DFB CR,CR,CR

A846: 45 4F 44 ASC \ENDADDRESS :$\

A849: 41 44 44

A84C: 52 45 53

A84F: 53 20 20

A852: 20 3A A4

A855: 20 28 AA JSR HEXIN

A858: 84 F2 STY ENDADR

A85A: 85 F3 STA ENDADR+1

* GET LOGICAL STORE

A85C: 20 00 AA JSR PRINT

A85F: 0D 0D 0D DFB CR,CR,CR

A862: 4C 4F 47 ASC \LOGICAL STOREADDRESS :$\

A865: 49 43 41

A868: 4C 20 53

A86B: 54 4F 52

A86E: 45 41 44

A871: 44 52 45

A874: 53 53 20

A877: 3A A4

A879: 20 28 AA JSR HEXIN

A87C: 84 FA STY LOGSTORE

A87E: 85 FB STA LOGSTORE+1

* GET JUMP

A880: 20 00 AA JSR PRINT

A883: 0D0D0D DFB CR,CR,CR .

A886: 4A 55 4D ASC \JUMPADDRESS :$\

A889: 50 41 44

A88C: 44 52 45

A88F: 53 53 20

A892: 20 20 20

A895: 3A A4

A897: 20 28 AA JSR HEXIN

A89A: 84 F6 STY JMPADR

A89C: 85 F7 STA JMPADR+l

* CALCULATE NEW STORE

A89E: A5 F0 LDA STOREADR

A8A0: 38 SEC

A8A1: E9 20 SBC #(HEADEND-HEAD)+1

A8A3: 85 F0 STA STOREADR

 54

A8A5: B0 02 BCS *+4

A8A7: C6 F1 DEC STOREADR+1

* CALCULATE LOGICAL STORE

A8A9: A5FA LDA LOGSTORE

A8AB: 38 SEC

A8AC: E9 20 SBC #(HEADEND-HEAD)+1

A8AE: 85 FA STA LOGSTORE

A8B0: B0 02 BCS *+4

A8B2: C6 FB DEC LOGSTORE+1

* MOVE HEADER IN FRONT OF PROGRAM

A8B4: 20 F5 A9 JSR MOVEHEAD

* CALCULATE LENGTHE OF PROGR.

A8B7: A5 F2 LDA ENDADR

A8B9: 38 SEC

A8BA: E5 F0 SBC STOREADR

ABBC: 85 F4 STA PROGLEN

ABBE: A5 F3 LDA ENDADR+1

A8C0: E5 F1 SBC STOREADR+1

A8C2: 85 F5 STA PROGLEN+1

A8C4: B0 03 BCS *+5

A8C6: 4C DA A9 JMP ADRERR

* ROUND UP TO 128 RECORDS

A8C9: A5 F4 LDA PROGLEN

A8CB: 18 CLC

A8CC: 69 7F ADC #127

A8CE: 29 80 AND #128

A8D0: 85 F4 STA PROGLEN

A8D2: 90 02 BCC *+4

A8D4: E6 F5 INC PROGLEN+1

* CALCULATE NUMBER OF RECORDS

A8D6: 0A ASL

A8D7: A5 F5 LDA PROGLEN+1

A8D9: 2A ROL

A8DA: A0 01 LDY #RECN-HEAD

A8DC: 91 F0 STA (STOREADR),Y

A8DE: A0 02 LDY #PST-HEAD

A8E0: A5 FA LDA LOGSTORE

A8E2: 91 F0 STA (STOREADR),Y

A8E4: A5 FB LDA LOGSTORE+1

 55

A8E6: C8 INY

A8E7: 91 F0 STA (STOREADR),Y

A8E9: A0 04 LDY #PINITADR-HEAD ABEB: 18 CLC

A8EC: A5 FA LDA LOGSTORE

A8EE: 69 1F ADC #PINIT-HEAD

A8F0: 91 F0 STA (STOREADR),Y

A8F2: C8 INY

A8F3: A5 FB LDA LOGSTORE+1

A8F5: 69 00 ADC #0

A8F7: 91 F0 STA (STOREADR),Y

A8F9: A0 0C LDY #PNDLO-HEAD

A8FB: A5 FA LDA LOGSTORE

A8FD: 18 CLC

A8FE: 65 F4 ADC PROGLEN

A900: 91 F0 STA (STOREADR),Y

A902: A0 11 LDY #PNDHI-HEAD

A904: A5 FB LDA LOGSTORE+1

A906: 65 F5 ADC PROGLEN+1

A908: 91 F0 STA (STOREADR),Y

A90A: A0 16 LDY #JUMPADRL-HEAD

A90C: A5 F6 LDA JMPADR

A90E: 91 F0 STA (STOREADR) ,Y

A910: A0 lA LDY #JUMPADRH-HEAD

A912: A5 F7 LDA JMPADR+1

A914: 91 F0 STA (STOREADR),Y

* BOOTTAPE GENERATION PART, GIVE INSTRUCTIONS

A916: 20 00 AA JSR PRINT

A919: 0D 0D DFB CR,CR

A91B: 50 52 45 ASC "PRESS PLAY & RECORD"

A91E: 53 53 20

A921: 50 4C 41

A924: 59 20 26

A927: 20 52 45

A92A: 43 4F 52

A92D: 44

A92E: 0D 0D DFB CR,CR

A930: 41 46 54 ASC \AFTER THE BEEPS 'RETURN'\

A933: 45 52 20

A936: 54 48 45

A939: 20 42 45

A93C: 45 50 53

A93F: 20 27 52

A942: 45 54 55

A945: 52 4E A7

 56

* OPEN CASSETTE FOR WRITE

A948: A2 10 OPENIOCB LDX #IOCBNUM*16

A94A: A9 03 LDA #OPEN

A94C: 9D 42 03 STA ICCOM,X

A94F: A9 08 LDA #OPNOT

A951: 9D 4A 03 STA ICAXI,X

A954: A9 80 LDA #128 ,

A956: 9D 4B 03 STA ICAX2,X

A959: A9 F2 LDA #CFILE:L

A95B: 9D 44 03 STA ICBAL,X

A95E: A9 A9 LDA #CFILE:H

A960: 9D 45 03 STA ICBAH,X

A963: 20 56 E4 JSR CIOV

A966: 30 28 BMI CERR

* PUT PROGRAM ON TAPE

A968: A9 0B PUTPROG LDA #PUTCHR

A96A: 9D 42 03 STA ICCOM,X

A96D: A5 F0 LDA STOREADR

A96F: 9D 44 03 STA ICBAL,X

A972: A5 F1 LDA STOREADR+1

A974: 9D 45 03 STA ICBAH,X

A977: A5 F4 LDA PROGLEN

A979: 9D 48 03 STA ICBLL,X

A97C: A5 F5 LDA PROGLEN+l

A97E: 9D 49 03 STA ICBLH,X

A981: 20 56 E4 JSR CIOV

A984: 30 0A BMI CERR

* CLOSE IOCB

A986: A9 0C CLOSIOCB LDA #CLOSE

A988: 9D 42 03 STA ICCOM,X

A98B: 20 56 E4 JSR CIOV

A98E: 10 24 BPL SUCCES

* IF ERROR OCCURS SHOW THE ERRORNUMBER

A990: 98 CERR TYA

A991: 48 PHA

A992: A2 10 LDX #IOCBNUM*16

A994: A9 0C LDA #CLOSE

A996: 9D 42 03 STA ICCOM,X

A999: 20 56 E4 JSR CIOV

A99C: 20 00 AA JSR PRINT

A99F: 0D 0D DFB CR,CR

A9A1: 45 52 52 ASC \ERROR- \

 57

A9A4: 4F 52 2D

A9A7: A0

A9A8: 68 PLA

A9A9: AA TAX

A9AA: 20 88 AA JSR PUTINT

A9AD: 20 00 AA JSR PRINT

A9B0: 8D DFB CR+128

A9B1: 4C A2 AA JMP WAIT

* IF NO ERROR OCCURS TELL IT THE USER

A9B4: 20 00 AA SUCCES JSR PRINT

A9B7: 0D0D DFB CR,CR

A9B9: 53 55 43 ASC "SUCCESFULL BOOTTAPE GENERATION"

A9BC: 43 45 53

A9BF: 46 55 1C

A9C2: 4C 20 42

A9C5: 4F 4F 54

A9C8: 54 41 50

A9CB: 45 20 47

A9CE: 45 4E 45

A9D1: 52 41 54

A9D4: 49 4F 4E

A9D7: 0D8D DFB CR,CR+128

* BRK-INSTRUCTION TO TERMINATE THE PROGRAM.

* MOSTLY A JUMP INTO THE MONITOR-PROGRAM FROM

* WHERE YOU STARTED THE PROGRAM. INSTEAD OF THE

* 'BRK' YOU ALSO CAN USE THE 'RTS' THE RTS

* INSTRUCTION, IF THIS PROGRAM WAS CALLED AS A

* SUBROUTINE.

A9D9: 00 BRK

* IF ERROR IN THE ADDRESSES TELL IT THE USER

A9DA: 20 00 AA ADRERR JSR PRINT

A9DD: 0D0D DFB CR,CR

A9DF: 41 44 44 ASC \ADDRESSING ERROR\

A9E2: 52 45 53

A9E5: 53 49 4E

A9EB: 47 20 45

A9EB: 52 52 4F

A9EE: D2

A9EF: 4C A2 AA JMP WAIT

* THESE 2 CHARACTERS ARE NEEDED TO OPEN

* A CASSETTE IOCB.

 58

A9F2: 43 3A CFILE ASC "C:"

A9F4: 9B DFB EOL

* ROUTINE FOR MOVING THE HEADER

* IN FRONT OF THE USER-PROGRAM

A9F5: A0 1F MOVEHEAD LDY #HFADEND-HEAD

A9F7: B9 A8 AA MOVELOOP LDA HEAD,Y

A9FA: 91 F0 STA (STOREADR),Y

A9FC: 88 DEY

A9FD: l0F8 BPL MOVELOOP

A9FF: 60 RTS

* THIS ROUTINE PRINTS A CHARACTERS

* WHICH ARE BE POINTED BY THE

* STACKPOINTER (USING THE 'JSR'

* TO CALL THIS ROUTINE) .

* THE STRING HAS TO BE TERMINATED

* BY A CHARACTER WHOSE SIGNBIT

* IS ON.

AA00: 68 PRINT PLA

AA01: 85 F8 STA EXPR

AA03: 68 PLA

AA04: 85 F9 STA EXPR+1

AA06: A2 00 LDX #0

AA08: E6 F8 PRINTI INC EXPR

AA0A: D0 02 BNE *+4

AA0C: E6 F9 INC EXPR+1

AA0E: A1 F8 LDA (EXPR,X)

AA10: 29 7F AND #%01111111

AA12: C9 0D CMP #CR

AA14: D0 02 BNE NOCR

AA16: A9 9B LDA #EOL

AA18: 20 A4 F6 NOCR JSR SCROUT

AA1B: A2 00 LDX #0

AA1D: A1 F8 LDA (EXPR,X)

AA1F: 10 E7 BPL PRINTI

AA21: A5 F9 LDA EXPR+1

AA23: 48 PHA

AA24: A5 F8 LDA EXPR

AA26: 48 PHA

AA27: 60 RTS

* HEX INPUT ROUTINE WAITS FOR CORRECT FOUR

* DIGITS OR 'RETURN'

AA28: A9 00 HEXIN LDA #0

AA2A: 85 F8 STA EXPR

 59

AA2C: 85 F9 STA EXPR+1

AA2E: A9 03 LDA #3

AA30: 85 FC STA HEXCOUNT

AA32: 30 31 HEXINI BMI HEXRTS

AA34: 20 DD F6 JSR GETCHR

AA37: 48 PHA

AA38: 20 A4 F6 JSR SCROUT

AA3B: 68 PLA

AA3C: C9 9B CMP #EOL

AA3E: F0 25 BEQ HEXRTS

AA40: C9 58 CMP 'X

AA42: F0 96 BEQ ADRERR

AA44: C9 30 CMP '0

AA46: 90 22 BCC HEXERR

AA48: C9 3A CMP '9+1

AA4A: B0 08 BCS ALFA

AA4C: 29 0F AND #%00001111

AA4E: 20 75 AA JSR HEXROT

AA51: 4C 32 AA JMP HEXIN1

AA54: C9 41 ALFA CMP 'A

AA56: 90 12 BCC HEXERR

AA58: C9 47 CMP 'F+1

AA5A: B00E BCS HEXERR

AA5C: 38 SEC

AA5D: E9 37 SBC 'A-10

AA5F: 20 75 AA JSR HEXROT

AA62: 4C 32 AA JMP HEXINI

AA65: A4 F8 HEXRTS LDY EXPR

AA67: A5 F9 LDA EXPR+1

AA69: 60 RTS

* IF WRONG DIGIT RINGS THE BUZZER

* AND PRINT BACKSTEP

AA6A: 20 0A F9 HEXERR JSR BELL

AA6D: A9 1E LDA #BST

AA6F: 20 A4 F6 JSR SCROUT

AA72: 4C 32 AA JMP HEXIN1

AA75: C6 FC HEXROT DEC HEXCOUNT

AA77: 08 PHP

AA78: A2 04 LDX #4

AA7A: 0A ASL

AA7B: 0A ASL

AA7C: 0A ASL

AA7D: 0A ASL

AA7E: 0A HEXROTl ASL

AA7F: 26 F8 ROL EXPR

AA81: 26 F9 ROL EXPR+1

AA83: CA DEX

 60

AA84: D0 F8 BNE HEXROTI

AA86: 28 PLP

AA87: 60 RTS

* THE RECURSIVE PUTINT FOR PRINTING ONE BYTE

* IN DECIMAL FORM

AA88: 48 PUTINT PHA

AA89: 8A TXA

AA8A: C9 0A CMP #10

AA8C: 90 0D BCC PUTDIG -IF A<10 THEN STOP RECURSION

AA8E: A2 FF LDX #-1

*** WARNING: OPERAND OVERFLOW

AA90: E9 0A DIV SBC #10

AA92: E8 INX

AA93: B0 FB BCS DIV

AA95: 69 0A ADC #10

AA97: 20 88 JSR PUTINT - THE RECURSION STEP

AA9A: 18 CLC

AA9B: 69 30 PUTDIG ADC '0

AA9D: 20 A4 F6 JSR SCROUT

AAAO: 68 PLA

AAA1: 60 RTS

* WAIT FOR ANY KEY

AAA2: 20 DD F6 WAIT JSR GETCHR

AAA5: 4C 00 A8 JMP START

* THE BARECODE FOR THE HEADER TO PUT IN FRONT

* OF PROGRAM'

* THE DUMMY HEADER DUMMY EQU 0

AAA8: 00 HEAD DFR 0

AAA9: 00 RECN DFB DUMMY

AAAA: 00 00 PST DFW DUMMY

AAAC: 00 00 PINITADR DFW DUMMY

* THE BOOT CONTINUATION CODE

AAAE: A9 3C LDA #$3C

AAB0: 8D 02 D3 STA PACTL

AAB3: A9 00 LDA #DUMMY

PNDLO EQU *-1

AAB5: 8D E7 02 STA MEMLO

AAB8: A9 00 LDA #DUMMY

PNDHI EQU *-1

 61

AABA: 8D E8 02 STA MEMLO+1

AABD: A9 00 LDA #DUMMY

JUMPADRL EQU *-1

AABF: 85 0A STA DOSVEC

AAC1: A9 00 LDA #DUMMY

JUMPADRH EQU *-1

AAC3: 85 0B STA DOSVEC+1

AAC5: 18 CLC

AAC6: 60 RTS

HEADEND EQU *

AAC7: 60 PINIT RTS

PHYSICAL ENDADDRESS: $AAC 8

STOREADR $F0 ENDADR $F2

PROGLEN $F4 JMPADR $F6

EXPR $F8 HEXCOUNT $FC

MEMLO $02E7 ICBAL $0344

ICBLL $0348 ICAX1 $034A

OPEN $03 CLOSE $OC

SCROUT $F6A4 BELL $F90A

PACTL $D302 EOL $9B

CR $0D START $A800

PUTPROG $A968 UNUSED CERR $A990

ADRERR $A9DA MOVEHEAD $A9F5

PRINT $AA00 NOCR $AA18

HEXINI $AA32 HEXRTS $AA65

HEXROT $AA75 PUTINT $AA88

PUTDIG $AA9B DUMMY $00

RECN $AAA9 PINITADR $AAAC

PNDHI $AAB9 JUMPADRH $AAC2

PINIT $AAC7 LOGSTORE $FA

DOSVEC $0A ICCOM $0342

ICBAH $0345 ICBLH $0349

ICAX2 $034B PUTCHR $0B

OPNOT $08 GETCHR $F6DD

CIOV $E456 CLS $7D

BST $1E IOCBNUM $01

OPENIOCB $A948 UNUSED CLOSIOCB $A986 UNUSED

SUCCES $A9B4 CFILE $A9F2

MOVELOOP $A9F7 PRINTI $AA08

HEXIN $AA28 ALFA $AA54

HEXERR $AA6A HEXROT1 $AA7E

DIV $AA90 WAIT $AAA2

HEAD $AAA8 PST $AAAA

PNDLO $AAB4 JUMPADRL $AABE

HEADEND $AAC7

 62

A DIRECT CASSETTE TO DISK COPY PROGRAM

CHAPTER 9

 If you have a bootable program on cassette, and you want to have it on a

bootable disk, the following program will help you.

 This program is easy to understand if you have read the previous

chapters. It allows you to copy direct from tape to disk, using a buffer.

 When you start your program from your machine language monitor, you must

put the cassette into the recorder and the formatted disk into the drive

(#1). After the beep, press return, and the cassette will be read. After a

successful read the program will be written on the disk. If, during one of

these IO's an error occurs, the program stops and shows you the error code.

 Now, power up the ATARI again and the disk will be booted. Sometimes the

program doesn't work correctly. Just press SYSTEM RESET and most of the

time the program will work.

 The copy program will not be described, but it has helpful comments, and

you possess the knowledge of the IO.

 It is important that the buffer (BUFADR) is large enough for the

program.

DIRECT CASSETTE TO DISK

COPY PROGRAM

SECTR EPZ $80.1

DBUFFER EPZ $82.3

BUFFER EPZ $84.5

BUFLEN EPZ $86.7

RETRY EPZ $88

XSAVE EPZ $89

DCBSBI EQU $0300

DCBDRV EQU $0301

DCBCMD EQU $0302

DCBSTA EQU $0303

DCBBUF EQU $0304

DCBTO EQU $0306

DCBCNT EQU $0308

DCBSEC EQU $030A

ICCMD EQU $0342

ICBAL EQU $0344

ICBAH EQU $0345

ICBLL EQU $0348

ICBLH EQU $0349

ICAX1 EQU $034A

ICAX2 EQU $034B

OPEN EQU 3

GETCHR EQU 7

CLOSE EQU 12

 63

RMODE EQU 4

RECL EQU 128

CIO EQU $E456

SIO EQU $E459

EOUTCH EQU $F6A4

EOL EQU $9B

EOF EQU $88

IOCBNUM EQU 1

ORG $A800

* OPEN CASSETTE FOR READ

A800: 20 A7 A8 MAIN JSR OPENCASS

A803: 30 63 BMI IOERR

* INITIALIZE BUFFERLENGTH & BUFFER POINTER

A805: A9 56 LDA #BUFADR:L

A807: 85 84 STA BUFFER

A809: A9 A9 LDA #BCFADR:H

A80B: 85 85 STA BUFFER+1

ASOD: A9 80 LDA #128

A80F: 85 86 STA BUFLEN

A811: A9 00 LDA #0

A813: 85 87 STA BUFLEN+1

* READ RECORD BY RECORD TO BUFFER UNTILL EOF

* REACHED

A815: 20 C8 A8 READLOOP JSR READCASS

A818: 30 10 BMI QEOF

* IF NO ERROR OR EOF INCREASE THE BUFFERPOINTER

A81A: A5 84 LDA BUFFER

A81C: 18 CLC

A81D: 69 80 ADC #128

A81F: 85 84 STA BUFFER

A821: A5 85 LDA BUFFER+1

A823: 69 00 ADC #0

A825: 85 85 STA BUFFER+1

A827: 4C 15 A8 JMP READLOOP

* IF EOF REACHED THEN WRITE BUFFFR TO DISK

* ELSE ERROR

A82A: C0 88 QEOF CPY #EOF

A82C: D0 3A BNE IOERR

A82E: 20 E9 A8 JSR CLOSCASS

A831: 30 35 BMI IOERR

* INIT POINTERS FOR SECTOR WR1TE

A833: A9 01 LDA #1

A835: 85 80 STA SECTR

A837: A9 00 LDA #0

 64

A839: 85 81 STA SECTOR+l

A83B: A9 56 LDA #BUFADR:L

A83D: 85 82 STA DBUFFER

A83F: A9 A9 LDA #BUFADR:H

A841: 85 83 STA DBUFFER+1

* WRITE SECTOR BY SECTOR BUFFER TO DISK

A843: 20 06 A9 WRITLOOP JSR WRITSECT

A846: 30 20 BMI IOERR

* IF BUFFER IS WRITTEN THEN STOP PROGRAM

A848: A5 82 LDA DBUFFER

A84A: C5 84 CMP BUFFER

A84C: A5 83 LDA DBUFFER+1

A84E: E5 85 SBC BUFFER+1

A850: B0 15 BCS READY

* INCREASE BUFFER AND SECTOR POINTERS

A852: A5 82 LDA DBUFFER

A854: 18 CLC

A855: 69 80 ADC #128

A857: 85 82 STA DBUFFER

A859: A5 83 LDA DBUFFER+1

A85B: 69 00 ADC #0

AB5D: 85 83 STA DBUFFER+1

AB5F: E6 80 INC SECTR

A861: D0 02 BNE *+4

A863: E6 81 INC SECTR+1

A865: D0 DC BNE WRITLOOP JUMP ALWAYS!!!

* THE BREAK FOR RETURNING TO THE CALLING MONITOR

A867: 00 READY BRK

A868: 98 IOERR TYA

A869: 48 PHA

A86A: A208 LDX #LENGTH

A86C: 86 89 ERRLOOP STX XSAVE

A86E: BD 84 A8 LDA ERROR,X

A871: 20 A4 F6 JSR EOUTCH

A874: A6 89 LDX XSAVE

A876: CA DEX

A877: l0F3 BPL ERRLOOP

A879: 68 PLA

A87A: AA TAX

A87B: 20 8D A8 JSR PUTINT

A87E: A9 9B LDA #EOL

A880: 20 A4 F6 JSR EOUTCH

* THE BREAK FOR RETURNING TO THE CALLING MONITOR

 65

A883: 00 BRK

* TEXT FOR ERROR MESSAGE

A884: 20 2D 52 ERROR ASC " -RORRE"

A887: 4F 52 52

A88A: 45

A88B: 9B 9B DFB $9B,$9B

LENGTH EQU (*-1)-ERROR

* RECURSIVE PRINT FOR DECIMAL ERRORCODE

A88D: 48 PUTINT PHA

A88E: 8A TXA

A88F: C9 0A CMP #10

A891: 90 0D BCC PUTDIG

A893: A2 FF LDX #-1

*** WARNING: OPERAND OVERFLOW

A895: E9 0A DIV SBC #10

A897: E8 INX

A898: B0 FB BCS DIV

A89A: 69 0A ADC #10

A89C: 20 8D A8 JSR PUTINT RECURSION STEP

A89F: 18 CLC

A8A0: 6930 PUTDIG ADC '0

A8A2: 20 A4 F6 JSR EOUTCH

A8A5: 68 PLA

ABAG: 60 RTS

* THE WELL KNOWN CASSETTE READ SECTION JUST A LITTLE

* MODIFIED

A939: 8D 08 03 STA DCBCNT

A93C: A9 00 LDA #0

A93E: 8D 09 03 STA DCBCNT+1

A941: 20 59 E4 JMPSIO JSR SIO

A944: 10 0C BPL WRITEND

A946: C6 88 DEC RETRY

A948: 30 08 BMI WRITEND

A94A: A280 LDX #$80

A94C: 8E 03 03 STX DCBSTA

A94F: 4C 41 A9 JMP JMPSIO

A952: AC 03 03 WRITEND LDY DCBSTA

A955: 60 RTS

BUFADR EQU *

PHYSICAL ENDADDRESS: $A956

SECTR $80 BUFFER $84

RETRY $88 DCBSBI $0300

DCBCMD $0302 DCBBUF $0304

DCBCNT $0308 ICCMD $0342

ICBAH $0345 ICBLH $0349

ICAX2 $034B GETCHR $07

RMODE $04 CIO $E456

EOUTCH $F6A4 EOF $88

MAIN $A800 UNUSED QEOF $A82A

 66

READY $A867 ERRROOP $A86C

LENGTH $08 DIV $A895

OPENCASS $A8A7 CLOSCASS $A8E9

CFILE $A903 JMPSIO $A941

BL!FADR $A956 DBUFFER $82

BUFLEN $86 XSAVE $89

DCBDRV $0301 DCBSTA $0303

DCBTO $0306 DCBSEC $030A

ICBAL $0344 ICBLL $0348

ICAX1 $034A OPEN $03

CLOSE $0C RECL $80

SIO $E459 EOL $9B

LOCBNUM $0l READLOOP $A815

WRITLOOP $A843 IOERR $A868

ERROR $A884 PUTINT $A88D

PUTDIG $A8A0 READCASS $A8C8

CERR $A8F6 WRITSECT $A906

WRITEND $A952

 67

HOW TO CONNECT YOUR ATARI WITH ANOTHER COMPUTER

CHAPTER 10

 The following programs make it possible to communicate between an ATARI

and a PET/CBM. The output ports are referenced as PORTA and DATABUS between

the two computers. Bit 0 on the ATARI PORTB is the 'hand' of the ATARI and

bit 7 on the same port is the 'hand' of the CBM. Now a handshake

communication between both can be started. The routines PUT and GET are, in

this case, dummies. Further, you need a stop criterium to stop the

transfer. See these routines merely as a general outlines and not as

complete transfer programs.

The ATARI - CBM / PET connection-wiring diagram

RECEIVE FOR ATARI

PORTB EQU $D301

PBCTL EQU $D303

PORTA EQU $D300

PACTL EQU $D302

PUT EQU $3309

ORG $A800

* SET BIT 0 ON PORTB AS OUTPUT

A800: A9 30 LDA #$30

A802: 8D 03 D3 STA PBCTL

A805: A9 01 LDA #%00000001

A807: 8D 01 D3 STA PORTB

 68

A80A: A9 34 LDA #$34

A80C: 8D 03 D3 STA PBCTL

* GIVE YOUR 'HAND' TO THE PET

A80F: A9 01 RFD LDA #1

A811: 8D 01 D3 STA PORTB

* WAIT UNTIL PET TAKES YOUR 'HAND'

A814: 2C 01 D3 WAITDAV BIT PORTB

A817: 30 FB BMI WAITDAV

* GET DATA FROM BUS & PUT THEM SOMEWHERE

A819: AD 00 D3 LDA PORTA

A81C: 20 09 33 JSR PUT

* TAKE YOUR 'HAND' BACK

A81F: A9 00 LDA #0

A821: 8D 01 D3 STA PORTB

* WAIT UNTIL ‘PETS HAND’ IS IN HIS POCKET

A824: 2C01D3 WAITDAVN BIT PORTB

A827: l0 FB BPL WAITDAVN

* START AGAIN

A829: 4C0FA8 JMP RFD

PHYSICAL ENDADDRESS: $A82C

*** NO WARNINGS

PORTB $D301 PORTA $D300

PUT $3309 WAITDAV $A814

PBCTL $D303 PACTL $D302 UNUSED

RFD $A80F WAITDAVN $A824

SEND FOR PET CBM

PORTB EQU $E84F

PBCTL EQU $E843

PORTA EQU $A822

GET EQU $FFCF USER GET BYTE

 69

* ROUTINE

ORG $033A,$A800

* SET BIT 7 ON PET TO OUTPUT

033A: A9 80 LDA #%10000000

033C: 8D 43 E8 STA PBCTL

* GET DATA FROM USER PUT IT ON BUS

033F: 20 CF FF GETDATA JSR GET

0342: 8D 22 A8 STA PORTA

* TELL ATARI DATA VALID

0345: A9 00 DAV LDA #0

0347: 8D 4F E8 STA PORTB

* WAIT UNTIL ATARI GIVES HIS 'HAND'

034A: AD 4F E8 WAITNRFD LDA PORTB

034D: 29 01 AND #%00000001

034F: D0 F9 BNE WAITNRFD

* SHAKE 'HANDS’ WITH ATARI

0351: A9 80 DANV LDA #%10000000

0353: 8D 4F E8 STA PORTB

* WAIT UNTIL ATARI RELEASE HIS 'HAND'

0356: AD 4F E8 WAITRFD LDA PORTB

0359: 29 01 AND #%00000001

035B: F0 F9 BEQ WAITRFD

* START AGAIN WITH DATA

035D: 4C 3F 03 JMP GETDATA

PHYSICAL ENDADDRESS: $A826

*** NO WARNINGS

PORTB $E84F

PORTA $A822

GETDATA $033F

WAITNRFD $034A

WAITRfD $0356

PBCTL $E843

GET $FFCF

DAV $0345 UNUSED

DANV $0351 UNUSED

 70

300 BAUD SERIAL INTERFACE VIA

THE ATARI JOYSTICK PORTS

CHAPTER 11

 The following construction article allows you to build your own RS232

interface for the ATARI computer. The interface only works with 300 Baud

and just in one direction (output).

 The interface consists of:

a) RS232 serial interface driver on a bootable cassette or as a SYS file on

disk.

b) Two wires hooked up to game port 3 on your ATARI.

 We used this interface with a DEC-writer, a NEC spinwriter, and a

Brother HR-15. The DEC-writer worked with just the two wires connected

(Transmit DATA and GND).

 The Spinwriter and the Brother needed some jumper wires as shown below:

Receive data on DEC-writer

Receive DATA on Brother HR-15

 71

Receive DATA on NEC Spinwriter

 Depending on the printer you use you will have to make the appropriate

wiring according to the instructions in the manual.

The source code for the RS232 driver is listed on a previous page in this

book.

This is a sample printout in BASIC:

l0 OPEN #1,8,0,"R:"

20 FOR X=l TO 10

30 PRlNT #l, "ELCOMP-RS232",X

40 NEXT X

50 CLOSE #l

will generate the following printout:

ELCOMP-RS232 1

ELCOMP-RS232 1

ELCOMP-RS232 3

ELCOMP-RS232 4

ELCOMP-RS232 5

ELCOMP-RS232 6

ELCOMP-RS232 7

ELCOMP-RS232 8

ELCOMP-RS232 9

ELCOMP-RS232 l0

The source code for the RS-232 Interface you will find on page 46.

 72

PRINTER INTERFACE

CHAPTER 12

 Screen to Printer Interface for the ATARI 400/800

 Many ATARI users would like to connect a parallel interface to the

computer. For many people buying an interface is too expensive. On the

other hand, they may not have the experience to build one by their own.

Also a lot of software is needed.

 The following instructions make it easy to hook up an EPSON or

Centronics printer to the ATARI.

 Only seven of the eight DATA bits are used for a printout.

 DATA 8 is grounded. BUSY and STROBE are used for handshake. There is an

automatic formfeed every 66 lines. Thus it is necessary to adjust the paper

before starting to print. You may need to make several trials to find the

best position of the paper. For a different form-length you may POKE 1768,

... (number of linesl. After system reset the line counter is set to zero,

so you have to provide your own formfeed for a correct paper position.

 You can control the length of a line by a POKE 1770,xxx. After doing so,

press system reset and enter LPRINT.

 The program SCREENPRINT is called by BASIC thru an USR (16701 and by the

assembler with a GOTO $0687.

You may install pnp transistors between the game output and the printer.

 The figure shows the connection of the ATARI game outlets and the

connector for the MX-80 printer. This is a so-called Centronics interface

and the program can be used with each printer and this interface.

EPSON MX80 - ATARI 400/800 Interconnection Schematic

 73

The next figure shows the program.

UNIVERSAL PRINT FOR ATARI

400 / 800 VERSION ELCOMP

BY HANS CHRISTOPH WAGNER

0600: 00 DFB 0

0601: 02 DFB 2

0602: 00 06 DFW PST

0604: 6E 06 DFW INIT

0606: A9 3C LDA #$3C

0608: 8D 02 D3 STA $D302

060B: A9 EB LDA #PND

060D: 8D E7 02 STA $02E7

0610: A9 06 LDA #PND/256

0612: 8D E8 02 STA $02E8

0615: A9 6E LDA #INIT

0617: 85 0A STA $0A

0619: A9 06 LDA #INIT/256

061B: 85 0B STA $0B

061D: 18 CLC

061E: 60 RTS

061F: 2B 06 42

0622: 06 3F 06

0625: 42 06 3F

0628: 06 3F 06 HANDLTAB DFW DUMMY,

WRITE-1,RTS1-1,WRITE-1,RTS1-1, RTS1-1

062B: 01 DUMMY DFB 1

062C: A9 30 OPEN LDA #$30

062E: 8D 03 D3 STA $D303

0631: A9 FF LDA #$FF

0633: 8D 03 D3 STA $D301

0636: A9 34 LDA #$34

0688: 8D 03 D3 STA $D303

063B: A9 80 LDA #$80

063D: 8D 01 D3 STA $D301

0640: A0 01 RTS1 LDY #1

0642: 60 RTS

0643: C9 9B WRIT CMP #$9B

0645: D0 1D BNE PRINT

0647: AD EA 06 CARR LDA LINLEN

064A: 8D E9 06 STA LCOUNT

064D: CE E8 06 DEC COUNT

0650: 10 0D BPL NOFF

0652: A9 0C LDA #12

0654: 20 64 06 JSR PRINT

0657: EE E9 06 INC LCOUNT

065A: A9 41 LDA #65

065C: 8D E8 06 STA COUNT

065F: EE E9 06 NOFF INC LCOUNT

0662: A9 0D LDA #13

0664: 20 D1 06 PRINT JSR OUTCHAR

0667: CE E9 06 DEC LCOUNT

 74

066A: F0 DB BEQ CARR

066C: D0 D2 BNE RTS1

066E: A9 1F INIT LDA #HANDLTAB

0670: 8D 1B 03 STA $031B

0673: A9 06 LDA #HANDLTAB/256

0675: 8D 1C 03 STA $031C

0678: A9 41 LDA #65

067A: 8D E8 06 STA COUNT

067D: AD EA 06 LDA LINLEN

0680: 8D E9 06 STA LCOUNT

0683: 4C 2C 06 JMP OPEN

0686: 68 BASIC PLA

0687: A5 58 NORMAL LDA BASIS

0689: 85 FE STA PT

068B: A5 59 LDA BASIS+1

068D: 85 FF STA PT+1

068F: A9 17 LDA #23

0691: BD E6 06 STA ROW

0694: A9 27 ROWLOOP LDA #39

0696: 8D E7 06 STA COLOMN

0699: A2 00 LDX #0

069w: A1 FE LOOP LDA (PT,X)

069D: 29 7F AND #$7F

069F: E9 60 CMP #$60

06A1: 80 02 BCS LOOP1

06A3: 69 20 ADC #$20

06A5: 20 D1 06 LOOP1 JSR OUTCHAR

06A8: E6 FE INC PT

06AA: D0 02 BNE *+4

06AE: E6 FF INC PT+1

06AE: CE E7 06 DEC COLUMN

0681: l0 E8 BPL LOOP

06B3: A9 0D LDA #13

06B5: 20 0l 06 JSR OUTCHAR

06B8: EE E6 06 DEC ROW

06BB: 10 D7 BPL ROWLOOP

06BD: 60 RTS

068E: 48 41 4E

06C1: 53 20 57

06C4: 41 47 4E

06C7: 45 52 20

06CA: 32 37 2E

06CD: 37 2E 38

06D0: 31 AUTHOR ASC "HANS WAGNER”

06D1: AC l3 D0 OUTCHAR LDY $D013

06D4: DO FB BNE OUTCHAR

06D6: A0 80 LDY #$80

06D8: 09 80 ORA #$80

O6DA: 8D 01 D3 STA $D301

06DD: 29 7F AND #$7F

06DF: 8D 01 D3 STA $D301

06E2: 8C 01 D3 STY $D301

06E5: 60 RTS

06E6: 17 ROW DFB 23

06E7: 27 COLUMN DFB 39

06E8: 41 COUNT DFB 6S

06E9: FF LCOUNT DFB 255

06EA: FF LINLEN DFB 255

 75

PND EQU *

BASIS $58 PT $FE

PST $0600 HANDLTAB $061F

DUMMY $062B OPEN $062C

RTS1 $0640 WRITE $0643

CARR $0647 NOFF $065F

PRlNT $0664 INIT $066E

BASIC $0686 UNUSED NORMAL $0687 UNUSED

ROWLOOP $0694 LOOP $069B

LOOP1 $06A5 AUTHOR $06BE UNUSED

OUTCHAR $06D1 ROW $06E6

COLUMN $06E7 COUNT $06E8

LCOUNT $06E9 LINLEN $06EA

PND $06EB

Program description:

Address

0600-061E end of the booting start

0610-082b HANTAB for the ATARI OS

062C-0642 opens the ports for output

0643-066D printer driver

066E-0685 initialize. Now LPRINT and PRINT “P” use thee printer

driver.

0686-06BD Label BASIC starting address for a call by BASIC.

Label NORMAL starting address for a call by assembler.

068E-06D0 Copyright notice

06D1-06E5 Subroutine, brings one ASCII character from the accumulator to

the printer

O6E6-06EA values for the various counters

ROW sets the number of horizontal lines to 23.

COLUMN sets the number of characters of one line to 39.

COUNT sets the number of lines between two formfeeds to 65

LCOUNT, LINLEN contains the actual parameters for the number of

characters and lines.

Boot-Routine

PST EQU $0600

PND EQU $0700

FLEN EQU PND-PST+127/128*128

ORG $6000

6000: A2 10 BOOTB LDX #$10

6002: A9 03 LDA #3

6004: 9D 42 03 STA $0342,X

6007: A9 08 LDA #8

6009: 9D 4A 03 STA $034A,X

600C: A9 80 LDA #$80

600E: 9D 4B 03 STA $034B,X

6011: A9 4A LDA #CFILE

6013: 9D 44 03 STA $0344,X

60l6: A9 60 LDA #CFILE/256

6018: 9D 45 03 STA $0345,X

 76

6018: 20 56 E4 JSR $E456

601E: 30 29 BMI CERR

6020: A9 0B LDA #$0B

6022: 9D 42 03 STA $0322,X

6025: A9 00 LDA #PST

6027: 9D 44 03 STA $0344,X

602A: A9 06 LDA #PST/256

602C: 9D 45 03 STA $0345,X

602F: A9 00 LDA #FLEN

6031: 9D 48 03 STA $0348,X

6034: A9 01 LDA #FLEN/256

6036: 9D 49 03 STA $0349,X

6039: 20 56 E4 JSR $E456

603C: 30 0B BMI CERR

603E: A9 0C LDA #$0C

6040: 9D 42 03 STA $0342,X

6043: 20 56 E4 JSR $E456

6046: 30 01 BMI CERR

6048: 00 BRK

6049: 00 CERR BRK

604A: 43 3A CFILE ASC "C: “

604E: 9B DFB *9B

PST $0600

PND $0700

FLEN $0100

BOOTB $6000 UNUSED

CERR $6049

CFILE $604A

 If you want to use this program, it has to be bootable. Therefore you

must enter both programs and start the boot routine at address $6000. This

will create a bootable cassette, you can use afterwards in the following

manner, to enter the SCREENPRINT in your computer.

- turn off the computer

- press the start key

- turn on the computer

- release the start key

- press PLAY on the recorder and

- press RETURN

BASIC or assembler-editor cartridge must be in the left slot of your ATARI

computer.

COMMENT:

DIFFERENCES BETWEEN THE ATARI EDITOR/ASSEMBLER CARTRIDGE AND ATAS-1 AND

ATMAS-1

 The programs in this book are developed using the ATMAS (ATAS) syntax.

In the following I would like to explain the difference of some mnemonics

of the ATARI Editor/Assembler cartridge and the Editor/Assembler and ATMAS-

1 from Elcomp Publishing.

Instead of the asterisk the ATAS uses the pseudo op-codes ORG. Another

difference is that the ATAS is screen oriented (no line numbers needed).

Instead of the equal sign ATAS uses EQU. Additionally ATAS allows you the

pseudo op-codes EPZ: Equal Page Zero.

 77

There is also a difference in using the mnemonics regarding storage of

strings within the program.

 ATARI ELCOMP

- BYTE "STRING" = ASC "STRING"

- BYTE $ = DFB $ (Insertion of a byte)

- WORD = DFW (Insertion of a word Lower byte,

higher byte)

The end of string marker of the ATARI 800/400 output routine is hex 9B.

In the listing you can see, how this command is used in the two assemblers:

ATARI Assembler: - BYTE $9B

ATMAS from ELCOMP - DFB $9B

Depending on what Editor/Assembler from ELCOMP you use, the stringoutput is

handled as follows:

1. ATAS 32K and ATAS 48K cassette version

LDX # TEXT

LDY # TEXT/256

TEXT ASC "STRING"

DFB$9B

2. ATMAS 48K

LDX # TEXT:L

LDY # TEXT:H

TEXT ASC "STRING"

DFB $9B

There is also a difference between other assemblers and the ATAS-1 or

ATMAS-1 in the mnemonic code for shift and relocate commands for the

accumulator.

(ASL A = ASL) = OA

(LSR A = LSR) = 4A

ROL A = ROL = 2A

ROR A = ROR = 6A

The ATMAS/ATAS also allows you to comment consecutive bytes as follows:

JUMP EQU $F5.7

$F5 = Label Jump

$F6 and $F7 are empty locations.

This is a comment and not an instruction.

