0SI CHALLENGER
MEMORY MAP

FFFE TRQ VECTOR (01CO)
: FFFC RESET VECTOR (break) (FFOO)
FFFA NMI VECTOR (0130)
: FFF7 SAVE ROUTINE JUMP
FFF4 LOAD ROUTINE JUMP
FFF1 CONTROLTC CHECK ROUTINE JUMP
B FFEE OUTPUT CHARACTER ROUTINE JUMP
, FFEB INPUT CHARACTER ROUTINE JUMP
COLDSTART AND BASIC 1/0
- PROM
- FFOO~|
MONITOR PROM
- (If you answer M to C/W/M)
FEQO0 —
POLLED KEYBOARD PROM
542 and 600 keyboards
W . FDOO —
1P 2P
FLOPPY DISC ACIA
FCO0 BOOTSTRAP
FBOO 1P more ROM 430 board UART
. F800.__ 1P ROM starts
F0O00 ACIA in 1P's
KEYBOARD
DFOO
D7FF—
VIDEO MEMORY
(440 board and 1P's
end at D3FF)
DO0O .
BFFF |
BASIC ROM
AOOQ—
POINTERS MORE RAM MAY EXIST HERE
(85,86) ety STRING top of memory
STORAGE % as answered to
as tOId by "MEMORY SIZE?"
(81,82)_"/' FREE MEMORY
(7F, 80)i :
ARRAY STORAGE
numeric arrays and names
string array pointers and names
Jim Williams N
SINGLE VARIABLE STORAGE
numeric variables and names
and string variable pointers and names
('78,7¢ }———i functions -- pointers and names
ouble O pointer
George DOrner NULL _ indicates end
: NULL of program
NORMAL BASIC PROGRAM
. normally STORAGE AREA -
(79,'7A)-—-0301)-) e
normally 0300)= IT NULL
. _ MOSTLY UNUSED
- Pl PAGE 2 some system flags and
] 0200 screen geroll routine near bottom
!/
o 6502 BTACK AREA
Y PAGE 1 01CO IRQ ROUTINE (if any)
f 0130 NMI ROUTINE (1if any)
0100 —
OOFF — PAGE O SPACE
OOES o NOT USED BY BASIC!
s SYSTEM STUFF
\ BASIC input buffer, flaga, pointers,

scratch pad areas, warmstart vector

THE

FIRST BOOK

as told by

Jim Williams
George Dorner

Copyright 1980

AARDVARK TECHNICAL SERVICES
1690 BOLTON
WALLED LAKE, MI 48088

THE

FIRST BOOK

as told by

Jim Williams
George Dorner

Copyright 1980

AARDVARK TECHNICAL SERVICES
1690 BOLTON
WALLED LAKE, MI 48088

PREFACE

Jim and George met at their OSI distributor's in the summer
of 1978. George, having come to try out a 2P and receiving
little attention and 1less help, cast about the room yearningly
and was rescued by Jim, who had driven about an hour to pick up a
tape and some documentation for the 2P at the high school where
Jim teaches. George, impressed by Jim's finesse at the keyboard,
contacted Jim for more info after he acquired his own 2P,
Despite the fact that the two lived some fifty miles from each
other, they squandered many units of phone calls exchanging
ideas, information, and dreams about their 2Ps, thus illustrating
how far a computer hobbyist, especially an 0SI owner, will go to
gather even a crumb of information about his system., The phone
bills mounted, since each called the other as soon as some new
fact or application was conjectured. When they got together
again for one humongeous (sp?) session, much of what is listed
here was gleaned or surmised, and Jim later put it all down in
notes. He sent a copy to Roger and Jane Olsen of Aardvark
Technical Services for their perusal, and he was urged to
formalize the notes for the benefit of nther O0SI users. That is
how this document came to be.

Most all the good stuff is due to Jim, George having served
chiefly the role of Johnson's Boswell (or was it Boswell's
Johnson?) .

Some people, other than our wives and the Olsens, should be
thanked. One 1is Jeff Beamsley of TEK-AIDS, INC.,, who was a lot
more helpful than the salesperson mentioned above. Stan Murphy,
who contributed the super material on the garbage collection
problem, would probably have done the whole thing better. We
thank the hardware designers of 0SI, but our thanks go to almost
no one else in Ohio. Finally, we thank MICROSOFT and Richard W.
Weiland, without whom we would have probably been wasting our
time on the New York Times crossword.

Jim Williams
George Dorner

March, 1980

TABLE OF CONTENTS

CHAPTERS

0.

ASSUMPTIONS AND GROUND RULES

INTRODUCTION TO BASIC IN ROM

HINTS AND KINKS

MEMORY LOCATIONS OF INTEREST

A WALK WITH BASIC

USING THE USER FUNCTION

THE GARBAGE COLLECTOR PROBLEM

VERY USEFUL ROM ROUTINES

DATA STATEMENT FILE UTILITIES

APPENDICES

BASIC Tokens

BASIC ROM Routines and Entry Points
BASIC Demo Program and Dumps
Flowcharts

Multiple BASIC Programs

23 Bit INVAR Routine

Other 'Soft BASICs

ASCII and Graphics Reference Charts

Wb W

BIBLIOGRAPHY

INDEX

Chapter 0

ASSUMPTIONS AND GROUND RULES

We make many assumptions and probably not enough concessions
to our audience. It is assumed that you are pretty familiar with
the hexadecimal, binary, and decimal number systems. Almost all
our communications are in hex, as God and MOS Technology
intended. Conversions to and from decimal are mostly left as an
exercise for the reader. ASCII is acknowledged to be the 'lingua
franca' between you and the computer when using BASIC, so you
should be able to speak it when you look inside BASIC's domain.
An ASCII chart is included as a convenience in the appendices. A
good working knowledge of BASIC itself, including the quirks and
foibles of this particular brand, will be assumed. The keyboard
control characters peculiar to Challenger machines, including '?’
as 'PRINT', and <shift>s 0,P, and N are referred to without
explanation.

You should be familiar with the 0OSI monitor which comes at
SFEOO-FEFF and with 1its commands. We highly recommend the OSI
Extended Monitor, XMON, or at least some disassembler. Knowledge
of the 6502 architecture and at least ‘a nodding acquaintance with
its machine language is necessary. (One of us started on the
quest of understanding what came in those four ROM chips without
any knowledge of the 6502 -- but with a pretty good understanding
of its uncle, the 6800,)

We assume that you know that addresses for the 6502 are
listed low byte, high byte in memory and machine code listings,
but that a hex address may be printed as four hex characters
preceded by a '$'. Thus, the address $BDll is written that way
for humans better to understand, but the machine is 1looking for
two bytes, 11 BD, the hex part being understood. Finally, we
often use an address as the name of a routine which starts there
and sometimes as a label for the location itself, but we assume
that the context or the notation 'loc $0206' will help to keep
things clear. We sometimes write $79 when we mean $0079, and we
often write things like $0079,7A or $79,7A to indicate contiguous
locs. We had hoped to be consistent throughout, but readers of
authors who have no pride (these authors) can't expect
everything., We did try not to confuse the two very different
ideas of a location (or an address) and its contents which wé
tend to designate with parentheses as in the location $000F, but
the contents, ($0206), at the 1location $0206, or the pointer
which resides at $7B,7C, which we write as ($7B,7C). You must
also know what a pointer is and that $00 may be referred to as a
null.

-0.1-

»

TSRS e FREASTEE o m aTe PERE T

We use a lot of abbreviations -- ML for Machine Language,
FPA for Floating Point Accumulator, GC for Garbage Collector,
etc.

Finally, we assume that all readers will be charitable
enough to forgive typos and outright errors, and, most of all,
that they will be smart enough to figure out our very compact and
occasionally obtuse style.

HOW TO USE THESE NOTES

We did not sit down a couple of weeks ago and dash off these
notes while sipping tea and 1listening to <classical music.
Rather, they fell together 1in fits and spurts as we learned
something new or forced ourselves away from our Challenger
keyboards to commit some of this stuff to paper when we would
rather have stayed at the computer. Consequently, our writing
does not have the continuity and plot development of Herman
Melville -- it's more like Jack Kerouac or an eighth grader's
'what I did last summer' essay. Moreover, we are both
edge-a-katers, and you know how frequently they make something
simple hard to understand. You may be able to overcome these
disadvantages, actually understand some of what you have in vyour
hands in this document, and put it to good use if you follow
these tips: :

. 1. Scan the whole document as soon as you finish
reading this list.

2. Study the memory map and memory locations of
interest. -

3. Have copies of the memory map and BASIC dump
at hand while studying the rest of the notes.

4. Be prepared to study the notes slowly, often
using your Challenger to verify (we hope) what
you read.

5. Take notes so that you know where you've been.

6., GOTO 1., unless interrupted by need for sustenance
and other natural causes until you understand it
all or are otherwise sated.

-0.,2-

Chapter 1

INTRODUCTION TO BASIC IN ROM

THE BASIC INTERPRETER

Not to pull the rug out from under your mental concept of
how your computer works, but the BASIC language programs vyou
write are not instructions directly to your computer (the
definition of computer enters in now). The only instructions the
computer proper ever gets or can understand are binary numbers in
its memory. Your BASIC programs never take that form. (But your
USR routines necessarily take that form.) The only instructions
your computer actually executes are the 8000+ bytes of a wondrous
and complex program called the 'BASIC interpreter'. As you enter
your BASIC programs at the keyboard, you are simply providing
input for this program to interpret. The interpreter stores your
BASIC instructions and consults them to decide which of its many
tricks to perform -- but the interpreter is the program which is
always running and which is in control wunless it relinquishes
that control to the bare machine through a USR. Your stored
BASIC statements are just data which are being operated upon.

At a different level, much closer to where the 6502 lives,
it's somewhat like the relationship between the simple BASIC
program below and a person who knows little or nothing about the
workings of BASIC.

10 INPUT "GIVE ME TWO NUMBERS";A,B

20 INPUT “WHAT ARITHMETIC SHALL I DO";AS$
30 IF AS="ADD" THEN PRINT A+B

40 IF AS="SUBTRACT" THEN PRINT A-B

50 IF AS$S="MULTIPLY" THEN PRINT A*B

60 IF A$="DIVIDE" THEN PRINT A/B

70 GOTO 10

You might enter this program so you could let a newcomer 'tell
the computer what to do'. The newcomer types, say "3,4<cr>" and
then 'tells the computer to multiply'. His ‘'multiply' command
doesn't actually multiply, of course. 1It's just input which your
simple BASIC program uses to decide what to do. The program uses
the data stored in AS$ to decide which of its options to exercise.
In exactly the same sense, it 1is the BASIC interpreter which
refers to your stored BASIC statements to decide what to do next.
It is residing 'behind' your BASIC program doing the real work
and the real communication with the microprocessor.

-1.1-

Some knowledge of how this omniscient (almost) interpreter
works will help you understand why some strange things happen to
your nice, sensible BASIC programs -- and let you trick the
interpreter into doing things it normally wouldn't do (like
defeating <ctrl>C, or writing programs that won't LIST, or doing
an INPUT which doesn't scroll the screen and mess up your pretty
graphics, or avoiding pitfalls 1like the string array bug and
cropped-off long lines during tape SAVEs, or recovering when some
turkey hits <break>,C with your almost completed program in
memory and you with no copy -- or putting together your own,
home-made interpreter which is composed of hunks of code already
sitting in your machine, or ...)

BASIC 1is better when vyou understand how it works. Also,
BASIC is better when you marry it to machine code of vyour own.
These two facts go hand in hand, and in putting together these
notes, it is our goal to ease the task of understanding and
encourage lots of healthy marriages. ' '

If you're not familiar with the ROM monitor (where vyou get
to with <break>,M), play with it and make it a friend. It is one
of the useful features of your Challenger -- letting you directly
manipulate memory and write programs in machine language which
really do tell the computer what to do. 1If you're not there yet,
you may want to study the 6502 books listed in the Bibliography
before you jump in.

STORAGE OF BASIC CODE

A BASIC program is stored, line by 1line, in a partially
digested form normally starting at memory location $0301, which
is always preceded by by a null (00) at $0300. This designates
the beginning of the program storage. All BASIC keywords, FOR,
GOTO, END, =, CHRS$, etc., are stored as one-byte 'tokens'.
Tokens always have the highest bit on, i.e. they are always
greater than $7F, The token for END is $80, that for FOR is $81,
the one for LOG is $BS5, etc. A complete list appears in Appendix
1. Other parts of BASIC statements, like AA and 123 in LET
AA=123, are stored as the ASCII characters you typed in. The
line number is stored as a two-byte binary number. (That does
not explain why the largest allowed line number is 63999 instead
of 65535!) 1In addition to these data, each stored BASIC 1line
also holds a two byte pointer containing the address of the next
stored BASIC line. This lets BASIC search rapidly for a given
line number. The format of BASIC statement storage is always
like this:

00 PP PP nn nn bb bb bb bb bb 00
Initial Pointer Line # BASIC Code: tokens & ASCII Null
Null to next of this

line line
1.2

For example, the following BASIC statement would be stored as shown.
20 LET X=23:PRINT X may be stored as
b 29 03 14 00 87 20 58 AB 32 33 3A 97 20 58 00
beginning at location $0319.

In the example above, the statement was the second line of the
BASIC program. The entire .program, together with a dump of
memory pertaining to the program, is printed in Appendix 3. It
should be used for reference here and in the text below. A
program which produces a dump like this can be very instructive
to write.

The above information alone is enough to get you started on
a renumbering program for BASIC. Don't forget the GOTOs,
IF-THENs, GOSUBs, etc. Refer to the Bibliography for references
to avoid reinventing programs which have already been written if
you aren't up to the challenge or if you want to conserve your
time for nastier projects.

The phrase "normally starting at memory location $0301" can
provide interesting possibilities. BASIC keeps track of what it
is doing through the extensive use of "pointers", important
addresses which may change during execution, and which thus must
be kept 1in RAM. These and other important data are mostly kept
on page zero —-- the first 256 bytes of RAM, 'BASIC workspace',
the area 1in memory where your program and variables are stored,
begins at whatever address is contained in $0079, 7A (remember:
low byte, hi byte). Thus, when the coldstart routine initializes
these locations, it puts 01 in $0079 and 03 in $007A. Now, |if
you change this, either with your trusty ROM monitor or with POKE
statements, you can make BASIC store your programs anywhere in
RAM you choose. (Well ... almost anywhere,) 1In fact, you may
put one program stored starting at $0301, another at $0901, and
another..., all using the same line numbers if you wish!! BASIC
will find only one program at a time for RUNning and LISTing --
the one whose beginning is contained in $0079,7A. NOTE: the byte
immediately before the first line of each program must be a null
or nothing works.

An enlightening (even useful) example of multiple BASIC
programs with the same 1line numbers and living at different
places may be found in Appendix 5.

BASIC VARIABLE STORAGE

BASIC also needs space to store variables. These are stored
in memory Jjust above the program ~- numeric variables, preceded
by their names, from the end of the program going up, while
string wvariables are stored from the top of available memory
going down, their names being kept in a table together with the
addresses of the memory locations where the strings actually

live. An understanding of exactly how and where the variables
are stored will be interesting, but this is not of great utility

to most users. Here qoes anyway.

-1.3-

The BASIC workspace will always contain two data areas where
name tables are kept. One 1is for arrays, either string or
numeric, The other is for single variables, string or numeric,
and functions. Since only seven bits are needed for each
character of the variable name, and since two characters are
saved as the name, there are two bits available to show what type
of variable is stored. If the most significant bit (msb) of the
second character is a 'l', a string is indicated, while the same
bit in the first character indicates a function as in DEF
FNAB(X). Both first bits high indicates a string function such
as FNABS, although the system does not support them.

SINGLE VARIABLES

Single variables are stored immediately following the
program and starting at the address pointed at by $007B,7C.
Thus, the single variables start at (7B,7C). In the example, the
variable 'X' is stored beginning at $03AA.

Each single wvariable 1is stored in a fixed-length block of
six bytes in this area as shown here.

FUNCTION Nn nn cc cc dd dd
Function Loc. of 1st Loc. of
Name char. after dummy
(ASCII) = in DEF stmt variable
NUMERIC nn nn ff f£f f£f ff
VARIABLE
Variable Floating point value
Name
(ASCIT)
STRING nn Nn 11 SS sS 00
VARIABLE
Variable Length Loc. of Null
Name string
(ASCII)

(N indicates hi bit set)

Check this out with the memory dump in Appendix 3, or by looking
at actual memory storage in your machine.

To find a single variable, BASIC searches the names,
starting at (78,7C), skipping to the next name six bytes 1later
until a match 1is found. If a string variable is being sought,
the actual string is not here, but is at the address contained in
the fourth and fifth bytes. This address will point at the BASIC
program code for string variables which are defined in program
lines. The search ends if a match is not found before the limit
(7D,7E) is reached, and then a new variable is added to the end
of the table.

-1.4-

ARRAY VARIABLES

Arrays are stored in blocks of assorted length from (7D,7E)
to (7F,80). The blocks consist of two bytes for the name, two
bytes for the length of the block, one byte containing the number
of subscripts, 1i.e. 3 for DIM A(2,4,6), then the maximum
dimensioned size of each subscript -- two bytes each, followed by
four-byte blocks of data for each element as follows:

NUMERIC
ARRAYS
nn nn bb bb ss 2Z 2z Yy Yy e el el el el
Var. Block # of Last Next to Array element
Name Size SSs ss Last SS (typical)

These four bytes
repeated for each
array element.

For example, the statement DIM A(2,4,6) would result in the following:

41 00 AF 01 03 00 06 00 04 OO0 02 ,... data blocks
Don't forget that this BASIC uses zeroth elements in arrays and
that they are not counted in DIM declarations. Thus, DIM A(3)
makes space for four elements, A(0) through A(3).

STRING ARRAYS

nn Nn bb bb ss zz 2z YY Yy Ll L2 L2 00

Var. Block ¥ of Last Next to Elem. Loc. of

Name Size SSs SS Last SS Len, Elem.
These four bytes
repeated for each
string in array.

(SS = Subscript)

To find an array element, BASIC starts at (7D,7E) and 1looks
at the name, then skips to the name in the next block, the
location of which is determined from the third and fourth bytes,
and continues until a match is found. Then it skips four bytes
per element until it finds the element it wants. If it's a
string, we have the length and location of the string, not the
actual string. This table ends at (7F,80).

-1.5-

STRING VARIABLE STORAGE

Strings are actually stored starting at the top of memory as
indicated by (85,86)., Modifying the contents of these 1locations
-- or having answered a number less than the actual memory size
to "MEMORY SIZE?" at coldstart -- will keep the strings from
wiping out any other programs or data you may want to tuck safely
away in the top of RAM, BASIC uses this space for strings at the
top of memory with no regard for saving space or reusing space
unless it runs out of room as indicated when (81,82) approaches
(7F,80). To keep from creaming the array tables, the first thing
it would run into, BASIC employs a 'garbage <collection' routine
which tries to shuffle the strings around to the top of memory
and reclaim space. Unfortunately, there is a bug in the garbage
collector that makes it hang wup if it has to try to relocate
string arrays. This is accompanied by a characteristic blinking
of the screen and must usually be aborted by a <break>. Unless
you do some fancy string array manipulations in big 1loops, you
probably won't run into trouble, but a patch is included in
Chapter 6 in case you need to use string arrays extensively. The
FRE(X) routine at $AFAD calls the garbage collector before
finding out how much room is left between (81,82) and (7F,80).

NUMERIC VARIABLE REPRESENTATION

The floating point value of a numeric variable is stored 1in
four bytes in normalized binary exponential (scientific)
notation:

Sign & implied
Exponent most sig. bit

AARAAAAA

10000011 (.)00100000 00000000 00000000
Exponent Implied binary Least sig
sign point bit

This would be read as: .101 (base 2)*2"3 = S (base 10)

The last three bytes contain the number to an accuracy of twenty
four bits. The first byte is the power of two -- if you like,
the number of places to move the binary point. (The binary point
is like the decimal point, except to its right we have the 1/2s
column, the 1/4s column, the 1/8s column, etc. It may also be
referred to as the radix point.)

The most significant bit of the value (bit 7 of the second
byte) is always interpreted as having the value '1'. (If it were
'0', we could shift the number to the left -- i.e. shift its
binary point to the right -- until it was 'l1', increasing the
exponent by the number of places we moved.) Since this is
understood (this is what is meant by the word "normalized"), we
can use that actual bit in memory as the sign bit, 'l1' indicating
a negative number. Negative numbers are not represented in two's
complement form. The exponent, however, is represented in two's
complement form. Here are some examples:

-1.6-

5 10000011 00100000 00000000 00000000

1 10000001 00000000 00000000 00000000

2 10000010 00000000 00000000 00000000

3 10000010 01000000 00000000 00000000

4 10000011 00000000 00000000 00000000

7 10000011 01100000 00000000 00000000

15 10000100 01110000 00000000 00000000

-5 10000011 10100000 00000000 00000000

3/8 = .375 01111111 01000000 00000000 00000000
0 00000000 00000000 00000000 00000000

This representation allows decimal numbers up to 1.70141E38.
There is a smallest positive number which may be represented,
too. Its discovery is left as an exercise.

If you want to explore this further, the short BASIC program
below will read the binary representation of a number from
memory. More on number representation may be found in some of the
references cited in the Bibliography.

Here 1is a program to look at the binary representation of a
number which is stored in normalized binary exponential form as
four bytes in memory. It looks at the second through fifth bytes
after (7B, 7C). Deleting line 30 lets you look at the variable
name (and the first two bytes of the value).

The program waits for you to input a number, then prints the
binary representation of it, then waits for another number.

10 INPUT M

20 P=PEEK(123)+256*PEEK (124)
30 P=P+2

40 FOR J=0 TO 3

50 N=PEEK(P+J)

60 GOSUB 200

70 PRINT " ";

80 NEXT

90 PRINT

100 GOTO 10

200 FOR I=0 TO 7
210 B=N AND 27 (7-1)
220 IF B THEN PRINT "1";:GOTO 240
230 PRINT "O";

240 NEXT

250 RETURN

-1.7-

Chapter 2

HINTS AND KINKS

WHAT OSI FORGOT TO TELL YOU ABOUT BASIC

Following are some tips, pretty much in random order, which
may be helpful or informative.

—%

When the system is initiated, answer 'A' to "MEMORY SIZE?". The
'A' is for 'author'.
RICHARD W. WEILAND

-k

Only the initial quotation mark in a pair is required unless
ambiguity would result. For example, PRINT "JIM works fine, but
not INPUT "NAME;AS.

-

If you want to imbed commas or colons in a line you are typing in
response to an INPUT statement, begin the line with a quotation
mark. This will also let you enter a line with 1leading blanks,
which are stripped otherwise. The same trick will also let you
put commas or leading blanks in DATA statements, The <closing
quotes are still optional.

Can you come up with a way to INPUT a BASIC line containing a "
and a : and a , without rewriting the INPUT routine?

-

When using nested loops, a NEXT I,J will substitute nicely for
NEXT I:NEXTJ.

-

A colon after any response you type to an INPUT statement ends
what the INPUT sees, but what you type after the colon will be
seen as remarks on the screen. For example, if, in response to
INPUT AS, you type JIM:WILLIAMS<cr>, the screen will show
JIM:WILLIAMS, but AS$ will contain only JIM.

-2.1-

-

The colon is also useful in 'formatting' LISTs. Use one as the
first character in a line to set it off Blanks after the colon
will be printed in listings.

-

Although not documented in the old 0OSI BASIC manual (we're being
charitable), the statement ON X GOSUB mm,nn,PP... works just
fine, just the same as ON X GOTO, but calling subroutines.

-

CLEAR will reset all the variables to zero.

-t

Long BASIC 1lines produce auto carriage return/line feeds when
listed. When saving on tape, this causes the last part of the
line to be lost. By setting the "TERMINAL WIDTH" to be longer
than any BASIC line with a POKE 15,255, the damaging carriage
return will be avoided.

-

A super-simple decimal to hex converter is as follows: Enter the
number you wish to convert to hex. BASIC thinks this is a line

number. (P70 63999

Press <cr>. Then go into the monitor and look at locs $11,12 to
find the converted number lo byte, hi byte.

W

After warmstart, the stack is usually confused. This causes an
OM error with your first immediate mode memory-referencing
command after the warmstart. Get in the habit of hitting any
character and <cr> immediately after all warmstarts. We 1like A
or P because they are easy to hit rapidly in sequence with a
<cr>., See Chapter 7.

—K

The warmstart vector at $0001,0002 may be set to a return or
restart address for convenience while debugging a machine
language program. Then you may just hit the 'W' to get where you
want to go without entering the monitor after reset.

-

To edit a BASIC program without losing the values of variables,

" find the contents of $7B-82. Then edit the program (shorter

only), and replace the pointers with the monitor or POKEs. Do a
GOTO to get back into the BASIC program.

-2,2-

-t

The graphics characters in the error messages are caused by the
fact that the hi bit of the second character in the messages is
set to allow a routine to tell that it is the last character in
the message. Unfortunately, the error message printer doesn't
take that into account. Guess we'll have to live with it.

-

I1f you've manufactured tapes directly from a BASIC program,
you've probably also seen the message 'OK/SN ERROR/OK' at the end
of a tape load. Here's how to avoid that syndrome:

ggm CFl.
POKE 3,95 Turns "OK" off aleo ‘

POKE 3,76 Turns it back on m»AZMk

-

Here's a quick and effective security trick. By making the 'OK'
message printer at $03 point to a simulated CONT statement, your
BASIC INPUT statements become immune to people hitting <cr>
without a response first, and thus having access to the BASIC
editor to cream your program (or LIST it and find out how it
works.) Since the 'OK' message printer is invoked both by the
'OK' when a null input is given and when BASIC 1is warmstarted,
this trick protects against <ctrl>C and even <break>W! The
easiest implementation is to put the code at $02C3 -- where the
$03 JMP to SA8C3 can be changed with one POKE.

02C3 2065A6 JSR SA665 call the CONT routine

02C6 68 PLA

02C7 68 PLA fix stack

02C8 4CFCAS5 JMP SAS5FC jump back into BASIC exec loop

Patch this in with a POKE 5,2 -- or out by putting the . $SA8 back
in. (POKES, 168) Be sure to use prompt messages in your INPUTs;
it's disconcerting to try to warmstart and have only a question
mark come back! You can, of course, get back to normal by
putting the $A8 back in with the monitor.

—-R

The <ctrl>G is implemented as ASCII BEL, even if there's no bell.
A funny character is also printed. That's also the <character
echoed when the input buffer is full,

-

Here is a simple 'no LF' input, which is useful at the bottom of
a graphics display to avoid a screen roll. 1In response to an
INPUT (asking whether to go on or for more data, say), enter your
answer, then type <ctrl>0 and <ctrl>M instead of the usual <cr>.

-2.3-

-

Here's another 'no LF' input.

BASIC Code USR code
POKE 100,0 JSR $00C2
X=USR (X)) IMP $A925

POKE 100,128

-

Sometimes when the machine goes astray, as in a bad USR call, a
BASIC program is retrievable, even when warmstart won't respond.

Recovery of a BASIC program may be possible if you answer "MEMORY
SIZE?" with a number instead of with <cr>. (Once you hit return,
BASIC fills memory with test bytes until it doesn't get them back
to see how much memory there is. That means your program is
completely overwritten and totally ipretrievable.) The easiest
way to recover 1is to go into the monitor before you coldstart,
find and copy the contents of locations $007B,7C and do the same
for $0301,02. Then coldstart, explicitly entering the same
memory size you were using before the bomb (i.e. 4096 for a 4K
machine, etc.), and after BASIC comes up, go back to the monitor
and replace (7B,7C) (the end of program/beginning of BASIC
pointer) and replace (301,302) (the pointer from the first BASIC
statement to the second), which will have been set to nulls by
the coldstart. The rest of the BASIC program should still be
there.

If you didn't save (7B,7C), then the contents of $0302 will be 03
always, unless you have hand-manufactured a very unusual BASIC
program, and the contents of $0301,02 will always be one higher
than the location of the first null byte after $0305.) Now you
may warmstart and the program will LIST, but it will bomb itself
if you try to RUN it, That 1is because variables will
overwrite the beginning of the program. To fix this, LIST the
program, enter the monitor, find the contents of $00AA,AB, add
two, and put those values into $007B,007C. Everything should
then be back to normal. (Immediately after 1listing any 1line,
(AA,AB) will be the address of the pointer to the next BASIC
statement -- or of the double null immediately before the
beginning of variable space.)

-

Here's a quick BASIC machine language dump. It makes a monitor
format tape for saving machine language very nearly as fast as a
machine language program does the same thing.

-2.4-

10 SAVE

20 Al= (fill in start address in decimal)

30 A2= (fill in end address in decimal)

40 ACIA= 64512 (61440 for 1Ps)

50 2?".HHHH/"; (HHHH is start address in hex)

60 FOR A=Al TO A2

70 D=PEEK(A)

80 H=INT(D/16)

90 L=D-16*H

100 IF H>9 THEN H=H+7
110 IF L>9 THEN L=L+7
120 ?CHRS (H+48)CHRS (L+48);
130 POKE 14,0

140 WAIT ACIA,2

150 POKE ACIA+1,13
160 NEXT

170 2" .FEOOG"

-

This is a better decimal to hex conversion than that used in the
above program.

1000 AS$S="0123456789ABCDEF"

1010 INPUT N

1020 L=N AND 15:H=(N-L)/16

1030 ?MIDS (AS,H+1,1)MIDS (AS,L+1,1)
1040 GOTO 1010

-

I1f you would like to be able to LOAD a BASIC tape and then have
it automatically continue and load a machine language tape with
the monitor, here is one way. Type the following:

SAVE<cr>

LIST(turn recorder on)<cr>

(stop tape when done) :
?2"POKE251,1:POKE1l,67:POKE12,254:X=USR (X)
(restart recorder)<cr>

(stop tape when done)

Now put the machine 1language on the tape using your favorite
method.

When you LOAD the tape, it will load the BASIC program, switch to
monitor mode (without clearing the screen), and 1load the last
part of the tape.

-k
Here's a program to prevent LISTing, done by replacing the

pointer from line 30 to the next line with a double null. The
program is 'found' by replacing the pointer (lines 10,20). The

last 1line of the program makes it invisible again. The first
three 1lines must be copied exactly as shown, including blanks.
Added security may be had by turning off <ctrl>C with a
POKE 530,11 after line 30.

10 POKE 794, 32
20 POKE 795,3

30 REM
cee program which
e will not
ee e list
end with

POKE 794,0:POKE 795,0

-

You can defeat <ctrl>C, but <break> still 1leaves your program
vulnerable. Change the warmstart vector at $0001 to that of
coldstart or something else to avoid this.

-k

Here 1is a fast screen <clear 1in BASIC. 1It's not as fast as
machine language, but much faster than the usual FOR
I=1t030:?:NEXT., It uses the screen as string storage space! The
address POKEd after the PEEKs is SDFFF.

10 A=PEEK (129):B=PEEK(130)

20 POKE 129,255:POKE 130,215

30 AS=" <~ 65 blanks ~-> . "
40 FOR I=1 TO 32:AS$=AS$+"":NEXT

50 POKE129,A:POKE 130,B

-

If you wish to look at a program on a tape without writing over a
program which is already in memory, the following 'VIEW' program
may be useful. It is absolutely relocatable. It reads tapes and
writes only on the screen.

20 07 BF 20 EE FF DO F8 FO F6

This won't work on 1Ps, but the following will work on either
machine (but this one is not relocatable):

1000 A9 80 Set LOAD flag
1002 8D 03 02 Load it

1005 20 EB FF ACIA input

1008 20 EE FF Output to screen
100B 4C 00 10 Jump to start

-—

0000
0003

0006, 7
0008, 9
000A-C

000D
000E

000F
0010

0013-5A
005F
0061
0064
0065
0079,A
0078,C
007D, E
007F, 80
0081, 82

0083,4

0095, 6
0087, 8
0089, A
008C

008F, 90

0093,4
0095,6
0097,8
00Aal

00AA, AB

00AC, AF

00AE,F

Chapter 3

MEMORY LOCATIONS OF INTEREST

WARMSTART jump-you get here from <break>W-and you
may change it to jump wherever you like!

Jump for the 'OK' message printer subroutine.
location $03 a $60 (RTS) to defeat 'OK'.
Address of INVAR (it's AE0S).

System puts address of OUTVAR here (it's AFCl).
USR jump. Put your USR address in $0B,C. 1It's
initialized by the system to point to the FC ERR

rout ine-SAES88, ‘

Number of NULLS to be put in after SAVEQd <cr>'s.

Number of chars since last <cr>. Used for

auto cr/1f and POS(X).

Number of chars until auto cr/lf. Make it >71 to

ensure not losing long lines on tape SAVEs.

Like 000F, but for comma-spaced zones.

Equals 14*(INT(line length/14)-1).

Input buffer. v
String-variable-being-processed flag. $FF=string.

?7?

<ctrl>0 flag. Hi bit on = suppress PRINTing.

Sometimes contains $68, ?7?

Pointer to beginning of BASIC workspace for RUN,LIST,etc.
Pointer to beginning of single variable storage.

Pointer to beginning of array storage.

Pointer to beginning of FREe memory.

Pointer to last used byte of string space.

Moves from top of memory down.

MEMORY SIZE from coldstart-- used later for string scratch
pad.

'HIMEM'-~top of memory allowed to be used for BASIC.
Current line (for BREAK IN LINE XX).

Sometimes next line .

CONT flag. If it contains 0, CONT gives error.

Pointer to next character after last used DATA.

Points to initial null if RESTOREd.

Current variable name in ASCII

Where ADOB leaves address of variable it found.

Address of variable to be assigned by OUTVAR, AFCl.
General purpose alterable JMP instruction.

Target address goes in 00A2, 3,

Scratch pad. Points to pointer of next BASIC

line after LIST N, or to middle of 3 final nulls

after LIST.

Primary floating point accumulator.

AC is exponent, AD-AF is mantissa.

Where INVAR (that's AEO0S5) leaves its 15-bit

signed argument.

Make

00BO
00BC-D3

00C2

00C3,4
00D1-3

00D 4-7

0NEO-5
OOE7-FF

COFB
00FC
00FD
OOFE,F
0100-7
0128
0130~
01CO0-
0200

0201
0202
0203

0205
0206
0207-E

020F-11
—0212
~0213-16
0217
-0218,9
021A,B
021¢,D
021E,F
0220,1
0222-FF
0300
0301

OFFF
1FFF
A000-37

A038-65
A0B4-163

Sign bit sometimes.

Routine to get the next character from wherever
$C3,C4 point. Used to work through BASIC lines
both from the input buffer and during execution.
Leaves the carry flag clear if char is 0-9.
Sometimes called CHRGET.

Entry point to $BC routine to get current char
Sometimes called CHRGOT.

Address of current char in $BC routine.
Clobbered by XMON during disassemblies, thus
rendering $BC routine useless.

Floating point value of last RND call; will

be regurgitated by RND(0).

Apparently unused (by BASIC) Page Zero space.
Apparently unused (by BASIC) Page Zero space.
Note: system can get in mood where it puts
stuff in OOFO,Fl.

ROM monitor Load flag (O=keyboard). -

ROM monitor contents of current mem location.
Printed to screen, then erased by ROM monitor.
ROM monitor address of current mem location.
Where B96E leaves ASCII rep of floating point number.
ROM monitor and coldstart prom initialize stack here.
NMI routine (if you put it in).

IRQ routine (if you put it in).

Current screen cursor is D700+ (0200); it

is initialized to (FFEO).

Temp storage for char to be printed.

Temp storage for CRT driver.

BASIC LOAD flag (hi bit on=input from

tape instead of keyboard).

BASIC SAVE flag (0= not SAVE mode).

Time delay for slowing CRT driver.

Variable Execution Code block--for system
screen scroll; not reuseable by mortals.,
Apparently not used.

<ctrl>C flag (not O=ignore <ctrl>C).

Polled keyboard temp storage and counter.
Apparently not used.

Input routine vector (1P).

Output routine vector (1lP).

<ctrl>C routine vector (1P).

LOAD routine vector (1P).

SAVE routine vector (1P).

Only used in disc systems.

BASIC initial null (normally).

BASIC code normally starts here with pointer

to second line of BASIC code.

End of 4K.

End of 8K,

BASIC initial word jump table; in token

order; add 1 to each entry.

BASIC non-initial word jumps; actual addresses.
BASIC keywords in ASCII; hi bit set as delimiter;
in token order.

—302-

Al64-86
BCEE-DO05
BE39-4D

BE4E
DEXX
DF XX
F000, 1
F700-03
FB0O, 1
FCO00, 1
. FDOO-FF
FEOO-FF
FFO0-FF
FFEO

FFE1l
FFE2
FFE3, 4
FFES5, 6
FFE7,8
FFE9,A
—FFEB
- FFEE
FFF1
FFF4
FFF7
FFFA,B
FFFC,D
FFFE, F

Error messages; hi bit set as delimiter.

Code for S$BC routine; put in at coldstart.

'Want SIN-COS-TAN-ATN?' message; a vestige of

earlier RAM implementations of BASIC.

'Written by' message.

Screen size and other latched bit (lo bit=0 for small).
Keyboard, both ASCII and polled.

ACIA in 1P's.

PIA in 2P's (and others) with 500 CPU board.

UJART in 430 board.

ACIA in 2P's.

Polled keyboard prom in 2P's,

ROM monitor.

I/0 support and RESET (<break>) vector prom in 2P's.
Initial cursor position; $64 for 440 video (and 1P's?)

and $40 for 540 video (2P's).

Default 'TERMINAL WIDTH' (less 1).

CRT driver switch: 0 for 440, 1 for 540 video.

BASIC workspace lower boundary (for 0079,A).

BASIC workspace upper boundary.

Variable workspace lower boundary.

Variable workspace upper boundary.

System INPUT routine; returns char in accumulator.

System OUTPUT routine; call with char in A,

<ctrl>C check routine; exits to BASIC if <ctrl>C detected.
LOAD routine (sets flags when BASIC LOAD command is done).
SAVE routine (sets flags when BASIC SAVE command is done).
NonMaskable Interrupt vector (6502-determined).

Reset (<break>) vector (A502-determined).

Interrupt ReQuest vector (56502-determined).

See cCHAYTER 7 For Rom ReoT(vEs

-3.3~

Chapter 4

A WALK WITH BASIC

What we know at this writing about the life and times of 0OSI
ROM BASIC, Version 1.0, rev.3.2 is included here in both text and
in the various charts and tables.

A good place to start exploring BASIC is the warmstart entry
at $A274. BASIC can also be warmstarted by a jump to loc $0000,
where the system puts the instructions $4C/74/A2 after coldstart.
At this point, BASIC is looking at the keyboard and waiting for
immediate mode commands or BASIC instructions with line numbers
to be entered.

Consult the warmstart flowchart, Flowchart A, Appendix 4.
BASIC first clears the <ctrl>0 flag which is the msb of loc $0064
by an LSR $64. This allows output to occur. The message printer
routine is then invoked with the standard convention of pointing
A,Y (lo, hi) at the ASCII message whose last character is a null
in order to print 'OK cr 1f ', The message printer is at $A8C3,
the message text starts at $A192, and the null signals $A8C3 to
return. A jump to loc $0003 accesses the message printer.

Now, the 'fill the input buffer' routine is called. This
routine is located at $A357 and takes input from either keyboard
or ACIA, depending on the LOAD flag which is the msb of loc
$0203. All I/0 is done by vectoring to the FFXX prom. In this
case, input 1is done through a JSR to $FFEB. Characters are
received, screened, counted, and stored in the input buffer, locs
$0013 through $005A. The screening handles 'backspace', @,<ctrl>
0, and <cr>. When it sees a <cr>, it calls $A866 to put a null
rather than a <cr> in the buffer, and prints the cr/lf together
with extra nulls as defined by the contents of $000D. 1If needed,
the nulls are put in the output stream after cr/lf for a slow
device and may be seot with a NULL statement or with POKEs to loc
$000D. A flowchart is also included for this important routine
in Appendix 4.

During the coldstart, a vital routine 1is copied from
SBCEE-BD05 to the locations beginning at $00BC, This code is
called very often and puts the next character from the current
line into the accumulator. Thus, this routine is referred to as
CHRGET. (The current character may also be put in A by calling
$00C2, CHRGOT, instead of $00BC.) The routine sets the carry
flag for the information of the calling program if the character
being passed is numeric. The address of the current character is
in locs $00C3,C4 -- the address portion of an LDA instruction.
Everybody uses the code at $00BC to find out what's up next, and
the stuff at $00C3,C4 is constantly being changed by the programs
using SO00BC, in addition to being incremented by $00BC each time

-4.1-

it is called.

At this point, the $00BC routine 1is being used to work
through the ASCII in the input buffer as it is being tokenized.
$00C3,C4 is set to point at the input buffer. If the first
character ., in the buffer 1is numeric, the buffer must contain a
numbered line of BASIC source code, so we go to $A295 to do the
'tokenize and store in BASIC workspace, updating necessary
pointers' job on the input buffer. If the first character in the
buffer is not numeric, we must be doing an immediate mode
statement, so we call the routine at $A3A6 to tokenize the 1line
in the buffer and put it back into the buffer. Then we jump to
$A5F6, the main entry to the 'execute BASIC statements' loop.

When a program is RUN from the beginning, $SAS5F6 calls the
RUN routine at $A477 which does the following:
1) Points $00C3,C4 to the contents of $0079,7A, the
beginning of BASIC workspace, usually $0301
2) Resets the string pointer at $0081,82 to the top of
memory as recorded in $0085,86
3) Resets the array pointer to the end of the BASIC program
which is also the beginning of the single variable work
space as kept at $007B,7C. (This pointer is constantly
being updated during BASIC editing and program entry.)
4) Resets the 6502 stack pointer to ($01)FC
5) Stores a $00 in locs $008C and $0061 (why??)
6) Stores a $62% in loc $0065 (why??)
and 7) Returns

Then we Jjump to $A5C2, the top of the 'do the next line of
BASIC' loop. Refer to Flowchart A in Appendix 4.

In the main BASIC loop, at $A5C2, we first do a <ctrl>C
check and stop, printing 'BREAK IN LINE (contents of $0087,88)'
before returning to warmstart if <ctrl>C is detected. If not, we
check to see if the next character in whatever line we're working
on is a null (indicating the beginning of another BASIC line).
If it isn't, it had at least better be a ':' to indicate a
multiple statement 1line, or we go to the syntax error printer,
then back to warmstart. If a null was found, the hi byte of the
pointer following it will contain a null if we are at the end of
the program, so if we find that, we stop. Otherwise, it's on to
the next 1line of BASIC, first storing its line number, then
incrementing $00C3,C4 past the pointer and line number. The next
sequential instruction in ROM is $SASFC, and we continue executing
BASIC statements.

SASFC is the main entry point to the 'RUN the BASIC program'
loop. See its flowchart in Appendix 4.It calls $00BC and checks
for a null, exiting to warmstart if it finds one. Otherwise, it
calls SASFF to do the dirty work of executing a BASIC statement
before looping back to the top at $AS5C2.

SASFF calls $00BC and checks to see if the first character

is greater than $80. If not, it is not a token, so we must be
doing a LET statement with an implied LET. 1In this case, we go

-4.2-

to $A7B9, which calls $ADOB, a very important subroutine that
finds the name of the variable to be assigned by the LET, finds
its address in variable storage space, puts that address in
$0095,96, and also returns with the address in A,Y. $A7B9 stores
the variable address in $0097,98 and checks for an '=' (everybody
is using $00BC to find the next character), and if it doesn't
find one, generates a syntax error. If the '=' is found, the
important routine SAACl, the 'evaluate an expression' routine, is
called, which leaves the value from the expression 1in the
floating point accumulator, $00AC,AF. SA7B9 returns by way of a
JMP to $B774, the ‘'store. the floating point accumulator into
($0097,98)' routine. ($0097,98) was obtained from SADOB. Now we
return to SASFC, which loops back to the top at $A5C2. (There
will be a short quiz on these addresses at the end of the
period.)

If SASFF finds a token at the beginning of the 1line, it
first verifies that it is an 'initial word' token, (indicated by
a value less than $9C), then does an ASL, TAY to multiply the
token by two to get an offset for the table of initial words at
SA000.

Digression about tokens:

Tokens are functionally divided into 'initial words' 1like
FOR, RUN, or POKE and 'non-initial words' like THEN, =, or SQR.
For each initial word, there is a subroutine, the address of
which 1is 1in a table which begins at $A000. Each address takes
two bytes and is stored in order according to its token number.
That is, the first address is for token $80, the first token, the
next address ($A002,A003) is for token $81, etc. 1Initial tokens
go up through $9B. For non-initial tokens, some (like SQOR) are
complex enough to require their own subroutines, while others
(like =) do not. Tokens $9C through $SAC rquire no subroutines;
SAD through $C3 do. The first twenty-eight tokens, the initial
word ones, take 28*2 bytes in the table, so the non-initial
tokens get the addresses starting after the first fifty-six bytes
of the table, namely at $A038. 1Ignoring the hi bit of an initial
token and multiplying it by two gives the ‘address in the table of
the routine for that token. (If you think that's hard to follow,
try to infer it from a disassembled dump of the ROMs!) The words
which are tokenized are listed in order beginning at $A084., They
have the msb in their last character set, which allows the use of
varying 1lengths of words in that list. It also is the cause of
the funny error messages with graphics symbols as the second
character.

The other, non-initial, tokens are dealt with within the
routines for the initial words. Those that are complex enough to
need their own routines are called by the o0ld ASL, TAY trick.
The ASL 1is at SAC27, the TAY is at $SAC55. The offset in the
Y-register is added to an invented base address of $9FDE to find
the routine's address in the jump table. Example for the token
AD: $9FDE + 2*($AD with hi bit ignored) =$A038, the address of
the pointer to the routine for token $AD. Phew! Unlike the
previous case, this jump is not a stack trick, so the addresses

-4, 3=

in the jump table are correct as they stand. The $9FDE+4Y stuff
goes on around $ACS6.

End of digression. Where were we?

We had just found a token and gotten its offset. S$SASFF now
has the address of the subroutine that will do the operation of
the BASIC keyword that started the line. It pushes this address
onto the stack, calls $00BC for the convenience of the next
routine, and an RTS does the actual jump to the needed routine,
Again:. the address of the routine to do the desired BASIC
operation for an initial word is pushed onto the stack - like the
return address is for a JSR -- and then an RTS makes the
processor jump there. This all happens around S$SAG0D, You will
see that SASFF JMPs to $00BC, while the RTS in that routine is
the one which pops the address off the stack and 'returns' there.
Since the PC 1is incremented after popping the return address,
the addresses in the jump table for the initial words are all one
less than the actual entry addresses.

-

Sic transit BASICus
-

COLDSTART ET AL

Now that warmstart has been explored, what's left? For
starters, there's coldstart. It is entered by a IJMP $BD1ll1l from
the FFxx startup procedure. There isn't a lot going on now, just
lots of initialization of pointers and other data which BASIC has
to chew on, so we have not included a flowchart. Nonetheless,
there is still some mystery and room for further exploration
here.

First of all, the stack pointer is set at $(01)FF and the FF
is put at $88. The coldstart address itself is loaded in $01,02
and in $04,05, INVAR and OUTVAR addresses (SAE05 and $AFC1,
respectively) are loaded at $06,07 and $08,09 and the JMPs are
added just ahead of these four addresses. INVAR and OUTVAR are
used with the USR and elsewhere. They are described 1in some
detail 1in Chapter 7. At this point, either JMP $0000 or JMP
$0003 will take us right back to coldstart, but that changes near
the end of the coldstart routine. Next, the address SAEB88 is
loaded into $0B,0C to prepare for a function <call (FC) error
message in case there is a JMP to ($0B,00 or to $000A or a USR
call before a valid jump address has been entered there by vyou.
The error messages are printed from an indexed table by the
routine at $SA24E using the contents of X. How these contents are
set in two possible ways using the same tricky opcode, 2C, is
neat and you should study the code from $AE85 through $AE8C until
you understand it. This code is entered at two places, SAE85 or
$AE88, depending on the message required. This trick is pulled
several times throughout BASIC,

TR

Next, the terminal width is 1loaded into $0OF and $38 is
loaded into loc $10 (why?). The wvariable execution block,
CHRGET, which keeps track of characters in the input buffer is
loaded into $00BC-00D3 from its permanent location beginning at
$BCED. Then nine locations (including the nulls and POS counters
at $000D and $000E) are zeroed and a null is pushed onto the
stack before we finally get down to something which can be
detected by a user sitting at the terminal.

First, a <cr/1f> (the -BASIC CRT driver 1lives!), quickly
followed by the message '"MEMORY SIZE' and then a call to $A946,
the 'print a ?' routine. Then let the user fill the input buffer
until he hits a <cr>. Scrutinize a character in the buffer. Is
it an 'A'?? (Why 'A'? Try it -- or see the HINTS.) 1If so, do
what that's supposed to do and go back to the top of coldstart
for a rerun. 1Is it '00' (indicating a response of <cr>)? Then
test each memory location beginning at $0300 (things would
probably be acting very badly, if at all, if memory were not good
up to the point where BASIC itself really works) as follows:
store the current address, put $92 there, then check to see that
it really got there, and if so, shift left (yielding that
familiar $24), check to see that it was well-received, and, |if
so, increment the current address and do it again. 1If either
check fails, a bad memory 1location or the top of contiguous
memory has been found. (They are the same to BASIC.) The
current address (the actual top of memory + 1) is then placed in
$11,12, in $85,86, where it 1lives undisturbed until the next
coldstart or you alter it, and in $81,82. The value stored is
variously referred to HIMEM or MEMTOP on some systems. Its
permanent location is $85,86, the other 1locations simply being
set as initial values of pointers which will soon be reset. A
decimal response to 'MEMORY SIZE?' is converted to hex by $A77F
and placed in the right locations, while any other response
results in a syntax error. (Note: there is no check to see that
you gave a reasonable decimal answer.)

Well, you know what comes next. It's 'TERMINAL WIDTH''?',
followed by another look at the keyboard, a check into the buffer
for that null indicating a <cr>, and on to other things, 1leaving
the width where it was set earlier if the null is there.
Non-nulls are converted to from decimal to hex if possible and
rejected otherwise with a REDO message, until a valid decimal
entry (as determined by some mysterious arithmetic around $BDE3)
results in a new value for loc $0OF.

Coldstart is now on its last legs. The basic BASIC pointer,
as copied from the FFXX prom, is placed in that all-important
$0079,7A, the critical null is placed where the pointer points,
at $0300, and the pointer is incremented and placed in registers
A and Y, preparatory to a trip to $A21F to see that memory is big
enough for at least a one byte program, and a <cr/1lf> is printed.
The number of bytes from ($79,7A) to ($85,86) is then computed
and printed in decimal by good old $B95E with the hex being sent
in A/X (hi/lo), followed by the message 'BYTES FREE', Note: if
you enter a value for MEMORY SIZE which is greater than the

-4,5-

actual amount of memory existing, the number of BYTES FREE will
not be adjusted to be correct. For example, if you have an 8K
machine and enter '10000' as MEMORY SIZE, you will receive a
message of '9231 BYTES FREE' ... a good way to get free
write-only memory.

Wrapping it all up, the message printer address, $A8C3, is
stored at $0004,5, where it will be used to print all the 'OK's
in the next adventures of BASIC beginning at warmstart, SA274,
which address is stored in $0001,2 so that the JMP at $BE36 can
take us there. Sandwiched in there 1is a call to the 'NEW'
routine which set pointers $0079,7aA, $0078,7C, $0081,82,
$007D,7E, and $007F,80 and puts $68 at $0065 (wuzzat?). The
stack is consulted for the top two bytes, which are put at
$01FD,FE, and the stack pointer 1is aimed at $O0lFC. After
clearing $008C and $0061, coldstart is warm and meets its demise
with the JMP to warmstart.

There are other points of interest between $A000 and $BFFF
besides warmstart, coldstart, and all the subroutines which
compose BASIC statements. The three I/0 routines which wuse the
ACIA at SFCOX and which are located between $BF07 and $BF2C have
cousins between $SBEE4 and $BF06 which are designed to talk to a
UART at SFBXX and which are not wused in current Challenger
machines. A fascinating routine which was mostly listed 1in the
0OSI Small Systems Journal of July, 1977 is the CRT Simulator
between $B2FD and $BF72. If this routine 1is entered at S$BF2D
with an ASCII code in the accumulator, the character will be
printed on the screen at $D700 + ($0200) (or $D300 + ($0200) in
the case of the 1P -- the screen size is controlled by an address
in ‘the prom at $FFE2). The original program used all the memory
from $0200 to $020E, but it looks like $0203-205 are not used
here. The contents of $0206 control the rate of printing on the
screen and could be wuseful in BASIC games with graphics where
acceleration/deceleration effects are desired. The 'scroll the
screen' routine, a block of code at $BF83 is relocated into
$0207-20E so that it can modify its contents while moving lines
up the screen.

We haven't touched any of the math routines here.
Deciphering the floating point arithmetic is left to the reader
as an exercise. A few of the HINTS in Chapter 2 may also shed
insight into parts of BASIC which we have not described in this
text.

There are a few stretches of NOPs sprinkled through the
code. Perhaps you have listed the BASIC ROMs in ASCII and have
wondered what the message "WANT-SIN-COS~TAN-ATN" at $BE39 was.
It's a relic, a leftover from the cassette (RAM) version used -to
allow one to conserve memory at the cost of giving up the trig
functions. How many other such relics are buried in there??
Wouldn't it have been nice if they had really optimized the code
and given us RENUMBER or DELETE?

-
Ad maiorem gloriam Microsofteus.

-4,6-

That's about 1it, folks. Aside from sundry tables, subroutines,
and a little (very little) wasted space, that is BASIC as she |is
writ for OSI by MICROSOFT. You see, it's really very simple --
nothing that won't yield to a little time (off and on -- mostly
off -- for about a year) well spent in cogitation and deduction
(we bet Sherlock Holmes and Watson couldn't have done better;
hashish and software hacking don't seem to go together), and the
satisfaction when one has conqueredINTERRUPT.... Let's be
honest. It was fun, and we think that what we have set down here
is more or less correct. But there are still many routines which
we haven't touched (from the inside), and there must be a neat
idea for an application which you had when reading these notes
which deserves to be shared in a magazine article, letter to a
column editor, or at least in a note to us. We make this offer:

If you share some information about the
innards of BASIC or about their
application in new, unintended ways, we
will include the info, with credits, 1in
any subsequent edition of this document.

You may communicate with us by sending a
SASE to our publishers:

Aardvark Technical Services
1690 Bolton
Walled Lake, MI 48088

Decisions by the judges as to whether the
information 1is original enough or of
sufficiently general interest will be
final. Let us hear from yow though.

Then again, maybe we should all Jjust join Disassemblers
Anonymous.

Chapter 5

USING THE USER FUNCTION

The USER function, X=USR(Y), lets you pass a value computed
in your BASIC program to a machine language program, execute that
ML program, pass a value obtained by the ML back to BASIC, and
return control to the next statement in the BASIC program. The
ML program might drive a printer, do a fast screen clear or
reverse line feed, generate a musical note, drive an external
device like a PROM programmer, or do anything else the computer
is physically capable of. If you have a ML main program, the
USER facility is a convenient way to enter it. (Nobody will ever
know if you don't return to BASIC!)

Whenever BASIC wants to do a "LET" statement, 1like "LET
X=SQR(Y)" (the LET is optional), it calls some subroutine(s) to
evaluate whatever is to the right of the equal sign. To evaluate
"LET X=8SQR(Y)", it calls a-subroutine in-ROM. To evaluate "LET,
X=USR (¥)*, it<ealls a subroutine .in - RAM .located at. $O00A - (10:
dec):. That subroutine starts with a IMP dnstructien with the
first byte ($4C) at location $0A; and the other 2.. bytes -- . the
address to - jump to == in locatiens $0B,0C. The system puts the .
$4C in for you -- and puts the. location of the ROM 'Function Call
ERROR' - subroutine ($AE88) . in. $0B,0C. -4n order for.control te
actually pass to your: ML, you must £fill in its starting address
in.. .the - JMP instruction. - S0 if.your program starts at $0F00,-
(near the top of 4K RAM) you must put $00 (0 dec)in location $0B-
(11 - dec) and SOF (15 dec) in location $0C (12 dec). (Remember:
lo:byte, hi - byte.) For a simple example, here's a USER routine
that wuses ROM routines to let vyou ¢type a given number of
characters on the keyboard, and echoes them -- one character
late. Don't just read it, try it!

JSR AEO0S get the 16 bit (15+ sign) value passed from BASIC
LDX AF to SAE,AF, and put the low part in X-reg as cntr
LDA 00
PHA store a dummy first character
LOOP JSR FFEB get a char (no echo) from kbd, using ROM routine
TAY save this char in Y register
PLA put previous character in accumulator
JSR FFEE output previous char to scrn, using ROM routine
TYA get current character
PHA save it for next time
DEX decrement character counter
BNE LOOP loop if not down to zero
PLA get last saved character
JSR FFEE output it to screen, using ROM routine
RTS return to BASIC

14 Poke 11,@ : Poke 12,15 . TH(S wokKs

24 L= USR(L) Fle

Here's what's in memory. Use the ROM monitor to put it in. It
starts at location S$OF00, which contains a $20, with $05 in
location $OF01, etc. Don't forget to put the starting address in
$o0B,0C!

0 1 2 3 4 5 6 7 8 9 A B C D E F
OF00 20 05 AE A6 AF A9 00 48 20 EB FF A8 68 20 EE FF
OF10 98 48 CA DO F3 68 20 EE FF 60

Now on to bigger and better stuff. When BASIC sees "X=USR(Y)",
it:

1) finds where X is stored in memory and stashes the address
in $95,96 and $97,98

2) evaluates the expression in the parentheses -- here, simply
the value of Y -- and leaves that in the floating point
accumulator SAC-AF

3) does a JSR to $0A to do your ML

4) takes whatever value is left in the FPA and assigns it to the
variable whose address is in $97,98

If your ML calls INVAR ($AEO05), that ROM routine converts
the value in the FPA to a 16-bit (15 and sign) straight binary
number and leaves it in S$AE,AF (hi,lo). If you can handle the
floating point value, don't call INVAR -- what you want |is
already 1in the FPA.If you want 24 bits' precision instead of the
16 INVAR gives, use the routine in Appendix 6. To pass your own
number back to the BASIC program, you may leave your 16 bit value
A and Y (hi,lo) and call OUTVAR (AFCl) to convert it to floating
point and to put it in the FPA, or you may manufacture a FP
number and put it in the FPA vyourself. If you change the
contents of $97,98 (for example, by calling the routine at S$ADOB
and doing STA 97;STY 98) whatever value is in the FPA will get
assigned to the variable pointed at by the new contents of $97,98
instead of the variable to the 1left of the equals sign in the
BASIC USR statement, The ROM routine at $B774 which does the
actual storing is called after your ML program does its RTS.
Should you want to use this routine that stores the contents of
the FPA in ($97,98), feel free! BASIC leaves $C3,C4 pointing at
the first character after the right parenthesis of your USR
statement. If you call $C2, you can get that next character that
would normally cause a syntax error. (The SN ERROR doesn't
happen until after your USR ML has done its RTS.) For example:
Point the USR JMP instruction ($0A,0B,0C) to $OF00. Put an RTS
($60) at SOF00 and try this BASIC statement: "X=USR(Y)A". You
will get a syntax error, of course. Now change $OF00 to JMP $BC
($4C BC 00). This gets the next character (the "A") and updates
$C3,C4 to point past it. The same BASIC statement now gives no
error! Make $OF00 read JSR SBC;IJMP $BC and you can (mustl!) put
two characters after the right paren to avoid syntax error! Now,
since $BC leaves the character it finds right there 1in the
accumulator for you, you may use it -- perhaps to select one of
two or more ML programs -- or ??? You can play with this with
the following shorty:

-5.2-

0F00 20 C2 00 JSR 00C2 get the char

OF03 asg TAY

OF 04 A9 00 LDA 00 set up A,Y to return it

OF06 20 Cl1 AF JSR AFC1 put char in FPA to be
returned

0F09 4C BC 00 JMP 00BC point $C3,C4 past char & ret

This will return the ASCII value of the 'illegal' character after
the right parenthesis to your BASIC variable. Question: Why do
you get 165 (dec) instead of 42 (dec) for "X=USR(Y)*"? (Hint:
Think about tokens.)

Now for a real toughie. You want a USR function so that
X=USR(Y)Z,37*Q,R, 5+3 does the following:

1) X gets the value of S+3;
2) Z gets the value of 37*%*Q;
and 3) R gets the original argument of Y.

The next listing shows a program that does this. Follow through
this, and you'll be able to pass just about any arguments you
want.

1000 A597 LDA $97

1002 85F0 STA SFO save pointer to variable X
1004 A598 LDA $98
1006 85F1 STA S$F1 hi part

1008 2005AE JSR $AEO0S INVAR call to get Y as 16 bits
100B° ASAE LDA SAE

100D 85F2 STA SF2 save Y lo
100F ASAF LDA SAF
1011 85F3 STA SF3 save Y hi

1013 20C200 JSR $00C2 ADOB expects current char in A
1016 200BAD JSR $ADOB get ptr to next variable (2)
1019 8597 STA $97 save pointer to Z lo

101B 8498 STY $98 pointer hi

101D 2001AC JSR $ACOl check for and pass comma

1020 20C1laA JSR $AAC) evaluate next expr (37*Q)

1023 2074B7 JSR $B774 store FPA (37*)) to ($97,8) (Z)
1026 2001AC JSR $ACO1 get next comma

1029 200BAD JSR S$ADOB get ptr to next variable (R)

102C 8597 STA $97 save R pointer 1lo
102E 8498 STY $98 save hi part

1030 ASF2 LDA $F2 get Y lo

1032 A4F3 LDY S$F3 get Y hi

1034 20ClAF JSR SAFCl 16 bits in A,Y to FPA (Y)
1037 2074B7 JSR $B774 store FPA (Y) to ($97,8) (R)
103A 2001AC JSR $ACOl get next comma

103D 20C1AA JSR $SAAC1 evaluate expr (S+3)

1040 ASFO LDA S$FO

1042 8597 STA $97 restore ptr to variable X
1044 ASF1 LbA SF1 to $97,8 for $B774 which is
1046 8598 STA $98 called after we RTS

1048 60 RTS

-5-3-

Have you ever wished you could do a string input and not
have to worry about commas, quotation marks, and colons chopping
up your input and giving 'EXTRA IGNORED' messages? This routine
does it! It is called by AS$=USR(X). The string variable
contains exactly what you type--even a length zero string if you
just hit <cr>! The $B0B4 routine expects the $BC routine to be
pointing at the message to be assigned, so we have to save $C3,C4
to be able to continue our BASIC program when we return. $5B and
5C contain the delimiter characters $B0OB4 looks for to know when
the string is done -- commas and colons and stuff normally -- so
we put in a convenient non-alpha character. After letting $BOB4
find the 1length of the string and set pointers up, etc., we
restore $SBC's pointer to the BASIC line and go home, letting the
normal BASIC operation store the string for us. The two pops
before we return bypass a particularly nasty type mismatch check
at S$AABO. Happy inputting! (Courtesy of vyour 1local USER
function.) .

1000 2057A3 JSR $A357
1003 ASC3 LDA SC3
1005 A4C4 LDY $C4
1007 8511 STA $11
1009 8412 STY $12
1008 A913 LDA $13
100D A000 LDY $00
100F 85C3 STA $C3
1011 84CA4 STY S$SC4
1013 855C STA $5C
1015 855B STA $5B
1017 20B4B0 JSR S$BOB4
101A AS511 LDa $11
101C A412 LDY $12
101E 85C3 STA $C3
1020 84CH4 STY $C4
1022 68 PLA

1023 68 PLA

1024 4CC200 JMP $00C2

-5. 4=

Chapter 6
THE GARBAGE COLLECTION PROBLEM AND A SOLUTION
Stanley P. Murphy
THE PROBLEM

As described above, 051 BASIC in ROM uses a routine referred
to as a 'garbage collector' to keep house and clear out 'garbage'
in memory which is 1left over from its ordinary, everyday
activities. There 1is an error in this routine which severely
restricts the use of programs with string arrays, particularly if
concatenation of strings is extensive.

Strings which are not defined between quotes in a BASIC
statement are stored in the 'string space' at the top of memory.
For example, if the line '20 A$="A"' appears in a program, then
BASIC won't have to store a copy of the string in string space --
it can just set a pointer to the actual location of the string in
program storage. However, '30 INPUT BS$' will require the value
of BS to be put in string space with a pointer to its 1location
placed in the BASIC variable table.

On concatenation, say '50 CS$=C$+AS$', C$ is stored in string
space. Suppose we start initially with CS$="" and AS$="A". We
then execute C$=C$+AS$., CS$ will become "A" and will be stored in
string space. String space will contain just "A". Suppose we
execute C$=C$+A$ again. Now C$ is "AA"™ and string space contains
"AAA", Two of the "A"s are the new C$, and one is just left
behind in forming the new C$. If we do it again, C$ is "AAA" and
string space consists of "AAAAAA". In this example, three "A"s
in string space are for storing the last designation of CS$ and
the others are previous designations of C$ which are not removed
from memory. They are garbage.

Now suppose the following program is run:

20 CS="":AS$="A"
30 INPUT K
40 FOR I=1 TO K: CS$S=C$+AS$:NEXT

C$ 1is now K bytes long and takes K bytes to store. However, we
have used K (K+1)/2 bytes of memory in generating and storing CS$:
Thus, in the above program, if K=255 (the maximum string length),
we need 255 bytes to store the final C$, but we have tried to use
32,640 Dbytes! Available memory vanishes very quickly if a
program contains repetitive operations of this kind.

A memory rearrangement is needed if memory is to be properly

utilized. This is accomplished through the Garbage Collection
(GC) routine. This routine is called by BASIC when the string

-6.1-~

space is full., The GC relocates the valid strings back to the
top of memory and defines new pointers in BASIC variable space.
Using the above example GC recovers 32,385 bytes of memory for
further use.

0SI's GC routine works fine for programs containing numeric
variables, string variables, and numeric arrays. The above
program can be run on a 4K machine without a problem. However,
if the program also contains a string array, then the GC will not
work correctly. If, for example, we add the following 1line to
the above program: ‘

10 DIM IS$(6)

and enter K=255, the internal GC will cause the screen to 'pulse’
several times at a rate of once every 1.6 seconds, as the GC
routine walks through memory. This pulsing is characteristic of
GC failure, along with a 'dead' keyboard. Extraneous characters
may show up on the screen, and the BASIC program may be altered.
The execution time without line 10 is under two seconds, but it
exceeds twelve seconds with line 10 added. 1If the program were
entered exactly as written, the pulsing may continue until the
<break> key is pressed. Even if the program finally executes,
C$ is not placed properly at the top of memory.

A more general program to demonstrate the GC problem is:

10 DIM L$(26)

20 INPUT K

30 FOR I=1 TO 26

40 FOR J=1 TO K: LS(I)=L$(I)+CHRS(64+J)
50 NEXT J

60 PRINT LS(T),I:NEXT I

Here, a first order array with dimension 26 is established. Each
element is formed from the ASCII code starting at A and
continuing to Z. At the conclusion of filling each array's Q
elements with the alphabet, the element is printed followed by
the element number.

For an O0OSI BASIC-in-ROM machine with 8K of memory, the
program will run with L$(Q) DIMensioned for Q<=18, 1If Q exceeds
18, the GC routine fails. Similarly, if L$ is DIMensioned to
allow 62 elements instead of 26, failure occurs for Q>3.

This error 1is very troublesome for any BASIC program that
contains string arrays and does extensive string manipulations
(for example, a word processor written in BASIC).

CIRCUMVENTING THE PROBLEM
Ideally, one would 1like to correct the errors in the ROM
program. One could program a 2716 EPROM with the correct code and

substitute it, after some wiring changes, for the incorrect ROM.
This is neither simple nor inexpensive. There 1is, fortunately,

-6.2-

a simpler approach which is useful.

The listing below is a BASIC program that, when RUN, places
a corrected GC program at the top of memory. It protects the
program from being written over by other BASIC programs. It also
sets USR function pointers so that the program may be called by
X=USR(X). Finally, it displays on the screen two useful pieces
of 1information. It provides data for a POKE statement which may
be needed to reset the USR pointers if they are changed by
another program. It also provides the location, in decimal, of
the GC program called by USR (X).

The steps to use this approach are as follows:

1. Coldstart

2. LOAD the program listed below. .

3. RUN the program ONCE. (Each time the program is executed after
coldstart, "MEMORY AVAILABLE" is reduced in increments of the
GC program length). RUN time is about 15 seconds.

4. Record the POKE and LOCATION data for future use.

5. Type NEW and LOAD the program containing string arrays which
you wish to RUN,

6. Insert X=USR(X) in the program after each major concatenation
to call the corrected GC. Place the POKE statement before this
call if USR(X) is used elsewhere in the program to be RUN.

AN EXAMPLE

Take the general program listed above. Add the following
line:

60 X=USR (X)

This cleans up the garbage 1left after the completion of each
string array element, L$S(I). With this addition, an 8K machine
will operate with LS$(Q) DIMensioned for Q greater than 200,
Unfortunately, after 50 or 60 elements are generated, the program
slows down noticeably since the GC is moving a large number of
strings. This is the penalty paid for being forced to call the
GC more frequently than is necessary. It is better to err on the
side of conservativism, because the program bombs if the internal
GC is triggered.

-6.3~

BASIC Program to Fix GC Problem

10 X=PEEK(133):Y=PEEK (134)
20 L=256*Y+X:L=L-262

30 Y=INT (L/256):X=L-256%Y

40 POKE133,X:POKE134,Y

50 POKE1ll,X:POKE12,Y

60 PRINT"POKE1l,"; X; "POKE12,";Y
70 PRINTL2A=45383:B=45644

80 K=L:FORI=ATOB

90 IFIK>A+34THEN110
100 M=K+146:GOT0240
110 IFX<>A+59THEN130
120 M=K+140:GOT0O240

130 IFI=A+67THENPOKEL, 4:GOT0230
140 IFX>A+84THEN160
150 M=K+209:GOT0240

160 IFI<>A+137THEN180
170 M=K+146:GOTO240
180 IFI=A+216THENPOKEL, 2:GOT0230
190 IFI=A+217THENPOKEL, 24:GOT0230
200 IFI<>A+261THEN220
210 M=K+4:G0T0240
220 X=PEEK (I):POKEL,X

230 L=L+1:NEXT:PRINT" LOCATION" : END
240 Y=INT (M/256): X=M-256*Y

250 POKEL,Y: POKEL-1,X

260 GOT0230

A somewhat more efficient technique is to call the GC only
when free memory is small enough for there to be some chance of
the stock GC being called. By finding how much space is left
(not using FRE(X)! That calls the GC!) by looking at the actual
pointers, we can save some unneeded GC calls. The following
subroutine does just that:

200 LO=PEEK(127)+256*PEEK (128)
210 HI=PEEK(129)+256*PEEK (130)
220 IF HI-LO<100 THEN ZZ=USR(8)
230 RETURN

The figure of 100 bytes in line 220 is arbitrary; use a number

you like there. This subroutine should be called after every
major string operation instead of calling the GC directly.

—6. 4

Chapter 7

VERY USEFUL BASIC ROM ROUTINES

These are the routines that are of special interest to people
writing applications in machine language, or perhaps trying to
use existing routines to do the dirty work in implementing a new
language interpreter or the like. Here are text message printer,
numeric value printers, system I1/0 routines, numeric
manipulators, and practical and potential hooks into the system.
There are doubtless some we have missed or wunwisely dismissed,
but at least this is a fair start.

0000 .

This warmstart Jjump, accessed ae-anymtimzwg; <break>W, usually

points to BASIC warmstart at $A274, Consider changing it to
point at the ROM monitor, or your extended monitor, or anywhere
you keep having to go to. The standard warmstart at $A274 does
not reset the stack pointer, but if you point this jump at $0000
to code that does, like--LDX #$FE; TXS; JMP $A274--, you can
circumvent the annoying OM error which you get on the first
immediate mode which makes a memory reference.

0003 Pore 2,96 2r 4hs
TN N PV 7Y e
This is the 'cr/1f OK cr/1f' message printér Jjump. You can
defeat the 'OK' message by making the IJMP instruction in loc
$0003 into an RTS (replace the $4C with $60), or you could make
it jump elsewhere--perhaps to print a different prompt
message--or into an error trap.

00BC (and, of course, 00C2)

This 'CHRGET' routine is very useful in USR statements to change
the syntax of the statement. A call to $C2 from your USR routine
will get the next character from the USR statement into the
accumul ator. You may wuse this character to pass additional
information from BASIC, or to select between multiple USR
routines; or you may use other ROM routines to get additional
values or variables from the BASIC line. Repeated calls to $BC
will get the next characters from the line. Carry will be set if
the character returned is numeric. This routine would be an
essential parser for new interpreters written to run on 0OSI ROM
BASIC machines. If you use it, say in a USR routine in a text
processor to do whatever, be sure to save the contents of
$C3,C4--the actual pointer-- and restore them before RTSing back
to BASIC., The B3F3 routine might be helpful here.

-7.1-

e et

A357

This is the 'fill-the-input-buffer-until-<cr>' routine. It gets
input from the current system input device (tape if LOAD mode)
through $FFEB, and stores it in the 1input buffer, starting at
$13, using the X register as a pointer through the buffer. It
puts a null at the end of the inputted string 1in place of the
<cr>. Normal system conventions, 1like <shft>0, auto repeat,
ignoring control characters, etc apply. All wvalid characters
entered are echoed~-including the final <cr>. This last echo is
what scrolls the screen on INPUT instructions. (Yes, Virginia,
of course the INPUT routine uses $A357!) When $A357 returns with
your string in the buffer, it leaves X and Y set with the address
of the buffer, all ready to do STX $C3; STY $C4 to point the $BC
routine at the buffer to find out what was just entered.

A477

This is an initialization routine used by the BASIC RUN command.
Call this routine, then jump to $A5C2, and you'll be RUNning in
BASIC~-from a machine 1language start! This has distinct
possiblities in LOAD-and-go situations.

A77F

Looks for a decimal number with the $BC routine. Point $C3,C4 at
the input buffer (or wherever), call $BC, then call $SA77F, and
look for the 16 bit binary answer in $11,12. Don't forget to
reset $C3,C4 before going back to BASIC.

A8C3

The message printer -- important and easy. Point A,Y (lo,hi) at
the ASCII message in memory. Be sure there's a null ending the
message.

A925

This is actually an entry into the INPUT routine just after the
<ctrl>0 flag is cleared. If you first set the <ctrl>0 flag by
putting $80 in loc $64, and then calling this routine, you will
be in an INPUT statement with no echo--including the final <cr>
that messes up your nice graphics. If you want BASIC PRINT
statements to work again you must clear the flag ($0 to loc $64).
Since this routine uses $BC, if you call it from a USR statement,
you have to call $C2 first, to get the first character of the
'INPUT' part of the line; your BASIC USR/no-echo-INPUT statement
would 1look 1like this: X=USR(X)Y in order to INPUT to the
variable Y. X here is an unused variable. There seem to be
problems wusing A925 to try to INPUT strings from a USR routine.
(The INPUTted strings are stored in non-existent memory.)

AAC1

Here's a goodie. This routine gets a value from the BASIC line
(like starting immediately after the ')' of your USR statement),
doing all the arithmetic evaluations it finds necessary, and
leaves the result in the FPA., This gives you great power to
expand the USR statement to get as many values as you like to
your ML program. See the USR section for an example of using
this powerful routine. The AEOS routine is a natural companion
to this. You can use ACO0l to find a comma between arguments if
you want to get multiple values from the line. AACl does no T™
error check!

ABF5~-ACOC

This series of routines (actually of entry points to one routine)
uses the $BC routine to check the line for various delimiters.
If you disassemble the ROM here, you will find a classic wuse of
the $2C opcode as a combination NOP and immediate load, depending
on where you jump in. ABFB checks for ')'; SABFE for '('; S$ACOl
for 'y SAC03 for whatever character you 1leave 1in the
accumulator when you call it. $ABF5 checks for '(', calls $AACl
to get a value, then checks for ')'. This would be useful for
getting arguments for for functions in some new 'tiny'
interpreter.

ADOB

VARPTR 1is the command in some dialects of BASIC that does what
this routine does. A call to this uses the $BC routine to find
the variable name that is next in the line, finds the location in
memory of that variable (or creates it), and leaves the address
of the wvariable in locs $95,96 and in A,Y. If you store A into
$97, and Y into $98, you can call $B774 to store the contents of
the FPA 1into the wvariable. Of course, you can call OUTVAR,
SAFC1l, first, to put the 16 bit value in A,Y into the FPA before
calling $B774. Who knows what mischief you may come up with,
armed with the location of a BASIC variable!

AEOQS5

Often called INVAR, this routine converts the contents of the FPA
to straight binary and 1leaves the 16 bit result in $SAE,AF
(hi,lo). The argument of your USR call is in the FPA when your ML
is executed; that's how you usually get a value from BASIC by
calling S$AEO0S5.

-7.3-

AFCl

Often called OUTVAR, this routine takes a 16 bit value from A and
Y (hi and lo), converts it to floating point, and puts it in the
FPA. When you leave your USR routine via an RTS, the machinery
that called your USR also calls $B774 to put what you've left in
the FPA into the BASIC variable (found by $ADOB) at the left of
your USR statement.

B3AE

This is just like $AAC1l, except that it gives an FC error if the
value 1is >255 decimal. This is what 1is used by the POKE
instruction to keep you from trying to POKE a too-large number
into memory.

B774

Calling this routine stores the contents of the FPA into 4 bytes
of memory (presumably variable storage) pointed at by §$71,72.
$ADOB is useful here.

B95SE

Call this routine to print on the screen at the «current cursor
location the decimal value of the 16 bit number you have left in
A,X (hi,lo). Other entry points are

1) $SB95A to print current line (from $87,88);

2) $B962 to print the contents of $AD,AE (hi, lo).

B96E

This one creates an ASCII string, starting at $100, to print the
value in the FPA, exponential notation (if necessary) and all.
It even sets up A,Y to point at $100 so the next instruction can
be a call to A8C3 to print the string.

BBC3
This is an entry to the BASIC RND routine. 1If you call this
routine with a 1 in A, it will return with a random number in the

FPA. You should get a fair random number if you just use the 8
or 16 bits from SAE,AF.

-7.4-

BFO07

Calling this short routine will read a byte from the ACIA (at
$FCO0X). The read byte, with the highest bit masked off, will be
returned in A, This routine is independent of system LOAD and
SAVE flags.

BF15

The complement to $BF07, this one outputs a byte from A to the
ACIA. (No masking.)

BF 2D

With no concern for flags, a call to this puts out a byte from A
to the screen at the current cursor location, with auto cr/1f if
needed.

FDOO

This 1is the entry point to the polled keyboard routine in 2Ps.
The ASCII character typed is returned in A; it won't return until
a key is pressed. (Boo!) Stan Murphy has written a new 256 byte
version of this routine that makes lower case conveniently usable
-- with numbers, cr, etc. working normally in lower case. Both
shift keys even do the same thing! This text is being typed with
his keyboard routine in PROM,

FEOO

This 1is the entry point to the ROM monitor. It's a good place
for your ML programs to go when they're done.

FE43

This one is even documented by 0SI! 1It's a warmstart (no screen
clear or stack initialization) to the ROM monitor. 1If you put
other than 0 in $FB and jump here (some POKEs and a USR call, if
you 1like) you will be in ROM monitor Load mode! This is one way
to do multi-mode tape loads.

FFEB

This is the address called by the system to input a character
from tape or keyboard, as dictated by the LOAD flag. The
character is delivered to you in A. Use this routine freely.
This and the next 4 routines consist solely of JMP instructions
back into ROM. One of the great breakthroughs of the 1P is that
these system calling places are indirect JMPs through RAM.
($218-221) The coldstart routine initializes these 1locations to
point into ROM, but you can make them go through your own

-7.5-

routines to screen for special characters (<ctrl>E for your
editor, or <ctrl>L (form feed) for instant screen clear, or
<ctrl>B or S for big or small letters...my system now does most
of those). If you have access to a prom programmer, consider
changing those JMPs to go through RAM--at least input and output.
Initialization poses some problems, though.

FFEE

System output a character from A to screen and (if SAVE mode) to
tape, with all system conventions, nulls, etc. If you vector
this through RAM, you can check for ASCII $5F (underscore) and do
real backspace, using $200 as cursor location, doing a DEX, and
of course decrementing $0E.

FFF1

Call this routine for an easy soft exit from your ML program
loops. It's the <ctrl>C check--and it prints the usual 'BREAK'
message and goes to warmstart ($A274, not $0000, unfortunately.)

FFF4

This is where BASIC goes when it gets a 'LOAD' command. All it
does is set the LOAD flag and clear the SAVE flag. If you vector
it through RAM, vyou could make it do whatever you wanted on a
LOAD command! Nobody says it has to have to do with 1loading
anything. It does seem a natural if you have an Exatron Stringy
Floppy (TM-Exatron) or something...

FFF7

This is the SAVE routine--another flag-setter. Again, there Iis
no action here--it's a jump back into ROM.

-7.6-

Chapter 8

DATA STATEMENT FILE UTILITIES

DATA STATEMENT GENERATOR

Using knowledge of how BASIC statements are stored, this
program moves the variable workspace pointers, gets 1input from
the keyboard, generates DATA statements in memory, and exits
(with the operator's help) in such a manner that the DATA
statements are then an integral part of the program. They may be
listed with the program, or may be listed separately (presumably
to tape) to become part of a DATA statement data file.

Line 30 moves the array and bottom of strings pointers to
accommodate the new DATA statements; 32 moves the simple variable
pointer, thus losing the value of L. Line 40 initializes the
program's pointer to where the pointer of the first DATA
statement will be stored. The subroutine at 200 POKEs the
2-byte representation of N into P,P+1 -- and updates P for the
next call. Line 110 uses 200 to put in the pointer (length of
DATA string + 6 bytes overhead: 2 pointer, 2 line , 1 token, 1
null); 120 to put in the line number. Line 125 puts in the
token $83 for DATA. The program exits by putting back the high
byte of the simple variable workspace pointer. Once that is
done, however, BASIC no 1longer knows where the variables are
stored -- so it depends on you to type in the 1low byte. (It
tells you what to type before it loses sight of variable
workspace.)

RESTORE TO LINE N

The last part of the listing is a routine to do a BASIC
RESTORE function not to the beginning of all DATA statements, but
to any desired line number. This makes possible systems of DATA
statements which can be semi-randomly accessed: The DATA
statements starting with, say, 10000 could be one 1logical file,
those beginning with 11000 another, etc. While DATA statements
on tape are a rather awkward file medium, this does open up some
possibilities. The RESTORE to line N routine simply searches all
the line numbers, beginning with the first at loc 771,2 until it
finds the line you want. It fixes up the DATA pointer at $8F,90
to point at the null before that line's pointer. Line 2060 is a
simple test READ.,

-8.1-

5 REM DATA STATEMENT MAKER
6 REM

10 REM LINE 1000 CONTAINS LENGTH OF DATA BLOCK MAX
20 GOSUB1000

30 D=PEEK(124)+L:POKE126,D: POKE128,D

32 POKE124,D

35 GOSUB1000

40 P=PEEK(123)+256* (PEEK(124)-L)-2

50 INPUT"INITIAL LINE ";LI

60 PRINT:PRINT:PRINT"ENTER '//' TO EXIT
100 PRINTLI; "DATA";: INPUT AS

105 IFAS$="//"GOT0O180

110 LE=LEN (AS) :NsLE+P +6:GOSUB200

120 N=LI:GOSUB200:LI=LI+5

125 POKEP,131:P=p+1

130 FORI=1TOLE:POKEP,ASC(MIDS(AS,I,1))
140 P=P+1:NEXT

150 POKEP, 0:P=P+1

160 GOTO0100

180 N=0:GOSUB200

190 PRINT"TYPE 'POKE1l23,"PAND255"*

195 POKE124,INT (P/256)

199 END

200 LO=NAND255:HI=(N-LO) /256

210 POKEP,LO:POKEP+1,HI

220 P=P+2:RETURN

1000 L=3:RETURN

1800 REM

1900 REM "RESTORE TO LINE N" ROUTINE
1910 REM

2000 P=769

2010 INPUT"LINE ";N

2015 IFP=0THENPRINT"NOT FOUND":END

2020 LN=PEEK(P+2)+256*PEEK (P+3)

2030 IFLN<ONTHENP=PEEK (P)+2S6*PEEK (P+1):G0T02015
2040 P=P-1:POKE143,PAND255

2050 POKE144,INT (P/256)

2060 READA:PRINTA

2999 END

-8.2-

APPENDIX 1
BASIC L@JIXUP/JUMP TABLES

VoRD R THBLE AS Betad ExamP &S

LecC WORD TJIKEN T2 LacC

A0B4 END 80 A639+1 A000 Ey— WS YECY
A087 F2R 81 ASSSel A002 Folr dé HrF D2

AQOSA NEXT 82 AAJF+1 A004

AOSE DATA 83 A70B+l A00& vex A UE 45 52 D¥

AQ92 INPUT 84 A922+1 A003

AD97 DIM 85 ADOO+1I AQ0A
AQ9A READ 85 A94E+1 A00C
AD9E LET 87 A7B8+1 ACGOE
ADAl GOTO 88 A6BS+1 AO01O
ADAS RUN 39 A690+1 AO0l12
ADA8 IF SA A73B+1 AOl4

ADAA RESTORE 8B AS519+1 AOlé6
AOBl GOSUB SC A69B+1 AO1l8
ADB6 RETURN 8D ASES+1l AOlA

ADBC REM 8E AT4E+]l A0IC
AOBF STOP 8F AS837+1 AOIlE
AOC3 2N 90 A7SE+l A020

ADCS NULL 91 A67A+1 A022
ADC9 WAIT 92 BA3i+l AO24
AOCD L2ZAD 93 FFF3+1 A026
ADDl SAVE 94 FFF6+1 AQ28
AODS DEF 95 AFDD+1 AQ02A
AOD8 PIKE 96 B428+1 AO2C
. AODC PRINT. 97 AB2E+l- AO2E
AOEL CONT 98 A660+1 A030
AQES LIST 99 A4B4+l A032
AOE9 CLEAR 9A A68B+1 A034 -

ADEE NEW 9B AA460+1 A036
AOF1 TAB(9C
AOFS TO 9D
AOF7 FN 9E

AOF9 SPCC 9F
AOFD THEN AOD

A101 NOT Al

AlO4 STEP A2

Al108 + A3

Al09 - A4

Al1OA = AS

A10B 7/ A6

AlOC 1 A7

ALOD AND A8

Al10 @R A9

At12 > AA

All3 = AB

Alla < AC

AllS SGN AD B7D8 A038
All8 INT AE B862 AO3A
AllB ABS' " AF B7TFS A03C
Al1E USR BO 000A AO3E
Al21 FRE Bl AFAD A040
Al24 P@S B2 AFCE AQ42
Al27 SQR B3 “BAAC A044
Al2A RND B4 BBCO A04S
Al2D LO@G BS BSBD A0A4S .
Al 30 EXP B6 BBIB AO4A
A133 C3S B7 BBFC AQAC
Al135 SIN B8 BCO3 AQOAE
Al39 TAN B9 BCaC A0SO
A13C ATN BA BC99 A0S2
Al3F PEEK BB BA4IE A0S4
Al43 LEN BC B38C A0S6
Alas STRS BD BOSC A0SS
Al4aA VAL BE B3BD AOSA
Al4D ASC BF B398 AOSC

AlS0 CHRS C0 B2FC AOSE
AlS4 LEFTS Cl B310 A060
A159 RIGHTS C2 B33C A062
AISF MIDS C3 B347 A064

-A1c1-

10 PRINT"BASIC L@JKUP/JUMP TABLES"
15 PRINT:PRINT

20 PRINT “WARD : JUMP J To"
30 PRINT "LaC WORD TOKEN ''T@ Lgc
33 PRINT

IS AA=40960

37 T=123

40 FOBR A=41092 T2 41200
SO D=A:G@SU3 1000

60 PRINTHS" *;

70 G3SUB2000

80 PRINTVS: |
85 ND=2:D=T:GOSUB 1005

86 T=T+l ~

87 PRINTTABC14);HS; . . 22
90 GASUB3000 '

110 PRINTTAB(18);

120 PRINTHS;)
125 PRINT"+1%; :
180 PRINTTAB(26)3

150 D=AA .

160 G@SUBI000

170 PRINTHS

180 AA=AA+2

190 NEXT A

195 PRINT

200 FOR A=41201 T@ 41236

210 D=A:G3SUBI000

220 PRINTHS:" ";

230 GOSUB 2000

235 PRINTWS;

240 ND=2:D=T:G3SUB1005

242 T=T+1

245 PRINTTABC14);HS

250 NEXT A

260 PRINT

270 F@R A=41237 T¢ 41315

280 D=A:G23SUBI000

290 PRINTHS;* *;

300 GPSUB2000

305 PRINTWS;

310 ND=2:D=T:GOSUB100S

315 PRINTTABC14);15;

317 T=Te+l

320 G@SUB3000

330 PRINTTAB(13);

340 PRINTHS:

350 PRINTTAB(26);

360 D=AA

370 G2SUB1000

380 PRINTiHS

390 AA=AA+2

400 NEXT A

999 END

1000 ND=4

1005 Hgavn

1010 FOR I= ND-1 T4 0 STEP -1

1020 H=INT(D/161)

1030 D=D-H#*16t1

1040 IF H>9THENH=H+7

10S0 H$=H$+CHRSCAS+H)

1060 NEXT : >
1070 RETURN . ’

2000 Wsxr

2010 W=PEEK(A)

2020 WSaWS+CHRS(W) ' B
2030 IF W<127 THEN A=A+1:G2T3 2010)
2040 RETURY . '

3000 D=PEEK(AA) : .

3010 D=D+255%PEEKCAA+1) :)
3020 G@SUB10Q0

3030 RETURN

-Al . 2-

27

Appendix 2
BASIC ROM ROUTINES AND ENTRY POINTS

These notes do not claim to be complete or even completely
error-free. They are the result of our disassemblies and input
from other sources. They constitute a fairly useful reference to
have at hand while looking through other, as yet unexplored parts
of ROM BASIC.

0000 Warmstart jump

0003 Through-RAM jump for system
'OK' message printer

00Al1 General purpose alterable
JMP instruction

00BC CHRGET - get next char ftrom
line of BASIC or whatever

00C2 CHRGOT - get previous char

AlAl Look back through stack ??

A212 Check for OM and stack overflow

A24C 'OM' error routine

A24E Error printer; caller sets
X-reqg to error code

A357 1Input to buffer 'til <cr>;
put null at end of buffer

A386 Input from FFEB

A399 Toggle <ctrl>0 flag

A432 Find BASIC line whose is
in $11,12; put addr of ptr
of that line in $AA,AB

A477 Point $C3,C4 at $301; reset str
and array ptrs; reset stack to
$1FC;put 0301 in $8F,90;0 in $8C;
0 in $61; $68 in $65 (?2?)

A491 Clear stack; 0 in $8C and $61

A5C2 Top of main BASIC execution loop

ASFC Entry to BASIC execution loop

ASFF Do a line of BASIC

A629 JMP SFFF1l for <ctrl>C check

A636 <ctrl>C entry point

A77F Get dec from buffer using BC;
put value in $11,12

A866 Put null at end of buffer;cr/1f;
nulls from $0D

A86C Output cr/lf w/ nulls from $0D : .

A8C3 Message printer; A,Y (lo,hi)
point to message, which ends
with a null

AB8E0 Output one blank

A8E3 Output '?'

ABE5 Output char in A; update $OE
and do cr/1f if necessary

-A2.1-

A925
A946
AAC1
AAAD
ABAO
ABDS
ABF5
ABFB
ABFE
ACOl
ACO3

ACOC
ADOB

ADS3

AEO0S
AES85

AES88
AFC1l

BOAE
B3AE
B3F3

B4DO
B774

B887
B95A

B95E

/h952

BD11
BEE4

BEF3
BEFE

BFO07

BF15

BASIC INPUT routine less’

clear <ctrl>0 flag function

Output '? '; jump to A357

Get 16-bit value from BASIC line using BC routine;
a subsequent call to AE05 will put

the value in $SAE,AF; no ™ check

Like AAC1, but does T error check

Put 0 in S5F; call $BC; goto B887 if
numer ic character ?22??

16 bit complement using AE0S5/AFCl ?
Checks for '(', calls AACl, checks for ')’
SN error if next char not ')°*

SN error if next char not ' ('

SN error if next char not ';'

SN error if next char not what's in Acc
SN error printer

Get variable name from BASIC line using
$BC; put addr of var in $95,6; also

in Acc and Y register

Expects variable name in $93,94; finds
addr of variable and puts it in

$95,96 and Acc and Y; puts 0 in $61
INVAR; converts FP value in FPA to 15-bit
signed binary and puts it in $AE,AF

BS error

FC error

OUTVAR; puts 0 in $5F; converts 15-bit
signed binary in Acc,Y (hi,lo) to
floating point and leaves it in FPA

Does some housekeeping for message printer
Get 8 bit value from BASIC line using $BC;
put it in $AE,AF ?

Restore saved contents of $BC routine pointer:
put (S$BA,BB) into $C3,C4

Normalize FP value ??

Store FP value in FPA into 4 bytes

of variable storage starting at ($71,2)
Check for arith operators; long!

Prints current line as contained

in $87,88

Prints 16-bit value in Acc,X (hi,lo)

on screen at current cursor location

(in decimal)

Prints contents of $SAD,AE (hi,lo)

on screen in decimal

Coldstart entry point

Input char from UART (for 1883

chip at FBO0X,like 430 board)

Output char in Acc to UART

Initialize UART at FBOX;

8 bits, 2 stop, no parity

Input char to Acc from ACIA;

(for 6850 chip at FCOX, like

C IT 4r‘'s)

Output char in Acc to ACIA

-A2 . 2—

BF22

BF2D
FDO0OO
FEOO
FE43
FFO0
FFEB
FFEE
FFF1
FFF4
FFF7

Initialize ACIA; 8 bits,

2 stop, x16 clock

CRT driver: output car in Acc
Get char from polled keyboard
ROM monitor coldstart entry
ROM monitor warmstart entry
<break> routine entry

System input char routine (to Acc)
System output char (from Acc)
<ctrl>C check routine

System LOAD routine

System SAVE routine

-A2.3-

Appendix 3
BASIC DEMO PROGRAM AND DUMPS

Here is a simple sample BASIC program, along with dumps of memory
showing exactly how the program and all variables were stored,
along with page zero with its flags and pointers. Follow through
this, and there should be 1little question where and how the
interpreter finds and keeps track of things.

10 REM BASIC STORAGE DEMO
20 LET X=23:PRINT X

30 INPUT YESSIRREE:PRINTYE
40 LET AS$="ABC" :PRINTAS

50 INPUT BS$:PRINTBS

60 DIM A(3,2)

70 FOR I=1TO3:FOR J=1TO2

80 A(I,J)=(J<I):PRINTA(I,J);
90 NEXT J,I

100 END

Remembering that the BASIC storage format is:
[pointer lo,hil [line 1lo,hil [pgm text ASCII & tokens] [null]

and armed with your list of tokens, you should be able to make it
to the double null pointer at the end of the program at $03A8,9,
Single variables go through $03CD, and the array goes through

$0406.

\2 ,,f@mﬂsﬁ@ﬁg/c;’ﬁsrg
. 0 ? 6 7 8 9 A B C D E F _
0300 @03 0A 0-20 42 41 53 49 43 20 53 54 4F QO —-Nue

s 4 & 0 £
0310 sx? w:1 47 &5 30 44 45 EF' (00) 29 03 14 oo- 30 LNE #
0320 58[AB) 32 33 3a [97 20 58 3D_03 1E 00 [B4] 20 59 [1 TokeN

0330 45 53 53 49 52 52 45 45 3a [37] 59 45(00)50 03 28

0340 0o [7] 20 41 24[RH 22 41 42 43 22 3a[97] 41 24(00)
0350 5D 03 32 00[84 20 42 24 3a 97 42 24 @0) 6a 03 3¢

0360 00 [B5] 20 41 28 33 2c 32 29(Q0)7E 03 46 09 (B8] 20 .

0370 49[XH 31 [90] 33 3a[8]) 20 4a [A§ 31 [30] 32 (00) 98 03 .

0380 50 00 41 28 49 2C 4a 29 [AB 28 4a AC 49 29 3a [97] LN

0390 41 28 49 2¢ 4a 29 38 (00) A2 03 5A 00 [B2] 20 4A 2c

03a0 49(0) A8 03 64 00[8d(@0) 00 00 OOM 85 38 00 00
| X

-A3.1-

——— POINTER

P

0380 59 45 BE 40 E4 00 41 89 03 47 03 00 42 8Q 07 F9 pom
ce F
5 o wetl Sy e
03C0 1F 00 49 00 83 00 00 00 4A 00 82 40 00 og[m 09§ gace 70 ¢ o
T A 6
0300 39 09 02, 00 03 00 04/00 00 00 00/00 00 00 00/00 6{}
T #5355 ‘\0 50k
03E0 00 00 00/00 00 00 00/00 60 00 00/00 00 00 00/81 W a‘)&o
| pb "
03r0 80 00 00/81 80 00 00/00 00 00 00/00 00 00 60/00 K’ﬁ”‘ ' Cﬁ*)\‘,}
. C () ’
0400 00 00 00/81 80 00 Qg]Em FAmiLInR $2Y ,;t":eo S°
of -\ Flce memorl—> L
Jh\.\)“w\ ’ o
seéw 5
0 1 2 3 4 5 6 7 9 a BfcC f AS
IFFO 24 24 24 24 24 24_24 24 24]42 59 452D 4 P e
o TREC MEN By € |- MT"P.c*Lf“a,M
01 2 3 4 5 6 7 8 9 A ByC LT et
0000 4C 74 A2 4C C3 AB 05 AE C1 AF 4C 88 AE 04 00 48 T
T BUFFE © et
0010 38 FF FF[94 3A 993A 00 49 53 54 00 00 29 3A) INPY P”:e“if‘f?:"“b.’
0020 97 41 28 49 2C 4A 29 3B 00 3B 00 00 00 00 wmf or woe0 B
anovg ATS|B; PIRY L]
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |5 < ,p
0040 FB FF FF FF FF FB FF FF FF FF FF FB F7 FF
0050 FF FF FF FF FF FF FF FF FF FF FF [22 22 44 00 FF
0060 01 00 00 04 00 68 65 00 06 92 Al FF FF FF FF FF
SiNGLEVARS /‘w@uw"" o8
0070 FF 92 Al 47 B9 FF 04 00 FF 01 03 AA 03'CE 03 07 fece™
8K NAHYD) oS Cpgm A Aeerisy
0080 .04 F9 1F 00 20 00 20 64 FF 64 00 A7 03 00 00 00
T Lasr vses stamg smce
0090 03 1A 00 49 00 12 03 04 03 FF 00 00 BC 00 68 00
00A0 03 4C 02 00 07 04 F9 1E FD 00 A8 03 06 92 68 00 g,s?”’
, ol HERZ 0T
00BO 20 00 00 80 00 00 40 00 92 Al 98 Al E6 C3 DO 02_ goog,“ P;rﬁjf‘,',»
’ oldT mh
00CO E6 C4 AD 16 00 C9 3A BO OA C9 20 FO EF 38 E9 30 &Ffﬂfﬁ‘m”’”
<€ ;'Mﬂbeco
00DO 38 E9 DO 60 80 AF C7 52 FF FF 80 00 DC 00 20 01
00E0 FF FF FF FF FF FF FF 20 FF FF FF FF FF FF 40 D7 ot 7
pUM e&ﬁoo
00F0 40 D7 FF FF FF FF FF FF FF FF FF FF FF FF FF FF ﬁequ (e
~
v
0100 20 31 30 30 00 30 30 30 FF FF FF FF FF FF FF FF) poio(®
0110 FF FF 7F FF FF FF 07 BA EO 06 00 22 0D BA EO 18

FF

-A3.,2~

-

-A4.1-

INIT OISvd —
FLN0EXE ﬂw_w d00T
445V NOIINDAXIA OISVE 013 SEAINIOL
NIVWH HIINZ ALV aNV
OL 942V MOHTHOS
- JWpe
, ANIT DISVE
| FHOLS
| 06 TIVO) iina
- . SZINDIOL
(94SY) (9vEV)
Je— L LOTHIHAN
FETIORT, mcmom.wmﬁ.
BIINIOL
ISVd #0°€D
s1vadn
(¢) 88 001
: NI 44 I0d
. - 88'L8
(zuvaswava 03) €001 NI #
SNIT I0d
ANIT JXAN ON
{A0H WWI ou
24 _JS0M) 804 /L0 JLxE .
HAINIOL gosnd e/
HOIH
s1
¥ZJ4ng INdNI
FHL T1Id O
J6EV 1TVD
JTHO ANV
2 d0a JINIH
Y
DVId
0 741D HVITO
]
- (206V) _ (hiev
_ _ . . H0 0000)
] TUVISHEVA
: Vb 34eYoMO| 4

. 4007 NOIINOAXA OISVE NIVH ANV JHVLISWEVA

Ot J4eYOMOL 4

(DFH-X)
JHIND.¥VHD
INTHIEOAA

Am.._..ﬂm 4 0% JSVH |

_Quuq H0 Qi Woud .S&.HW ‘

[(D2u-X) SIINN0D
1 28

HEIINT

UNIINOY HULING THI TIIde LSEV

b 34eYyoMoL 4

: %J

¥VA 40 Edav
0L TOVV 40
INdIN0 NDISSY

30074
NI anOQ
NEnIIY

T sdo0d
SNILNOH
NOIIVEIL0 DISVE

WHOJEBIAL TTIM
JVHL INILNOH |
01 «NHNIIHe
v _S§300 D€
NI SIH {uvHO
IXaN S139 0d

0900 ddr

RO14VU3q0 o1sva

AN1an0d
NOISSIHIXT-THI
-SIVATIVAZ HOLVH
10VV TIVO

196°66
NI 1I J0d aNV
‘gaav SsII aN1d
‘EHVR HVA 13D

goav TIVD

|
(684V)

(QAITINT
W)

150
(x!100v) QNV
(X'000V) HSnd

(2«RDIOL)

ENIINOH +OISVE 40 ENIT SIHL JINDEXHs ddSV

Appendix 5

MULTIPLE BASIC PROGRAMS

The following is a sequence of instructions that will put three
BASIC programs in different places in memory at the same time,
along with a menu program that 1lets you select which of the
programs you want to run.

10 INPUT"PROGRAM (1/2/3)";N
20 POKE 122, 3+42*N
30 RUN

POKE122,5: POKE 768+512, 0: NEW

10 FOR I=1 TO 20

20 ?1;112

30 NEXT

40 ?"TYPE 'RUN 100' TO CONTINUE
50 END

100 POKE 122, 3:RUN

POKE 122,7:POKE 768+1024, 0:NEW

10 ?"NOW IS THE TIME FOR ALL GOOD
20 ?"MEN TO COME TO THE AID OF

30 ?"THEIR COUNTRY."

40 2:2:?

50 ?"TYPE 'RUN 100' TO CONTINUE
60 END

100 POKE 122, 3:RUN
POKE 122,9:POKE 768+512+1024, 0:NEW

10 FOR I=1 TO 30:2:NEXT

20 FOR I=1 TO 200 '

30 X=60*RND (8):Y=25%RND (8)

40 POKE 53248+INT (X)+64*INT(Y),42

50 NEXT

60 ?"TYPE 'RUN 100" TO CONTINUE"
70 END

100 POKE 122, 3:RUN

RUN 100

The immediate mode POKEs reset the BASIC workspace pointer and
put in initial nulls; the NEWs set the other pointers. Try it!

-A5.1~

a

Appendix 6
23-BIT INVAR ROUTINE

This routine does about the same thing as INVAR ($AE05), but
o 23 bits' precision instead of 1. The philosophy is to shift
the FP number in the FPA by just enough to right justify it. The
idea would work for 24 bits, but the loop decrementing X doesn't
work for zero times through. Nothing tricky -- but jit's wuseful
when 16 bits 1isn't enough. (Or when you're too lazy to mess
around in BASIC to make a number >2T15 by making a negative
number.)

1000 A918 LDA $18
1002 38 SEC

1003 ESAC SBC $AC
1005 297F AND S$7F
1007 AA TAX

1008 A980 LDA $80
100A 0SAD ORA $AD
100C 85AD STA S$AD
100E 4AAD LSR S$AD
1010 66AE ROR $AE
1012 66AF ROR S$AF

1014 CA DEX
1015 DOF?7 BNE $100E
1017 60 RTS

-A6.1-

Appeﬁaik 7

OTHER 'SOFT BASICS

The folks at Microsoft are no dummies. Not only did they
write the first widely used BASIC for small computers, they did
it in a way which enabled them to deliver essentially the same
interpreter to a number of micro manufacturers very quickly --
thus, giving them more return on their initial investment and
establishing their version as the industry standard.

It seems to us that BASIC was written in a higher 1level
language (was it PL/M?), subsequently modified per specifications
from manufacturers or distributors, and then assembled into the
appropriate machine code version. That is the reason that the
guts of any Microsoft BASIC and its use of memory are so similar
from machine to machine. As we noted elsewhere, this also
resulted in some unused code here and there. About the time we
were writing about the unused "WANT-SIN-COS-TAN-ATN"” mentioned in
Chapter 4, we were also reading up on the KIM cassette version
which allows you to scrap the trig functions in favor of more
available RAM. When we got our hands on a SYM version, we found
that it too gave this option -- even though this is a ROM
version. Some other goodies (e.g. direct use of hex from BASIC)
and completely different I/0 routines replace the trig functions
which must be loaded from tape or disk.

With some care it is possible to RUN a simple BASIC program
from one machine on one made by another manufacturer, but that is
too much trouble to be really useful. For ML dabblers who read
the hobby magazines, intimate knowledge of the Microsoft BASIC
bloodline can be more useful -- sometimes for the good program
which may be implemented on your Challenger with the change of a
few POKE or PEEK addresses and occasionally for obtaining more
information about how your BASIC works by reading what someone
else has discovered about their AIM or APPLE. Indeed, what is
now Chapter 8 began as an attempt to illustrate this point by
modifying Virginia Brady's APPLE program in MICRO 19. It turned
out that it was better to rewrite the whole program, but that
still makes the point -- we (and now you) have a good program
because of our knowledge of the inner workings of BASIC.

The cross-reference on the next page will be of help if you
want to dabble (we almost said plagiarize) with programs from
other machines. We have included only 6502 information, but even
scrutiny of the TRS-80 can be enlightening. We Jjust read a
review of the TRS-80 DISASSEMBLED HANDBOOK by R.M. Richardson
which makes this polnt.

"A7~ 1‘

BRIEF MICROSOFT 6502 CROSS-REFERENCE

0SI KIM SYM AIM APPLE OLD PET NEW PET
Input buffer 13-5A 1B-62 1E-65 16-5D 200-FF OA-59 20-50
CHRGET BC co cC BF Bl c2 70
POINTERS TO:
Workspace 79,A 78,9 78,C 73,4 67,8 7A,B 28,29
Variables 78,C 7A,B 7D,E 75,6 69,A c,D . 2A,B
Arrays m,E 7c,D 77,80 77,8 6B,C 7E,F 2C,D
FREe memory 7F,80 7E,F 81,2 79,7A 6D,E 80,1 2E,F
Strings 81,2 80,1 83,4 78,7C 6F,70 82,3 30,1

Top of memory 83,4 84,5 87,8 7F,80 73,4 84,5 84,5

More detailed 1lists of memory locations for the machines listed
may be found in old issues of the magazines MICRO, 6502 USER
NOTES, and COMPUTE, Some explicit references are found in the
Bibliography.

-AT7.2-

N

e~ o § T 0] d 3
-~ | u v H N | < 3
{ w H W = ad
L PN 1> 9
PIEENEERE { g
z [Z r : v
£ { A _ 6 6
X y X H | 8 8
» B | m | o | 1 L
Al A E 9 9
n > | N 3 G]
T p [1L 1 alv v
s 9’ S | 9 € £
a qa | v | € c c
b e O | v | I L
L d | ~ | d 1 ® | 0 f 0
L | 9 g ¥ £ 4 _ L | “QWS.GM...“.

e

-A8,.1-

S5 6

-t

+ -4

] 1
[mY
1 } 144
Hill
i
]
Nu buas -
=
IT1T
IREEN
}

£l

TTT7 fm [T Y MA\—
STTLIT “TIT : I lu
..‘!I*}T Ll ; — wﬂ.—“» I- 3 — o - _
1§ [== punssfon : £ - &
Ay REygEsung : : i
i s . \ : o TR HH
th bud > L) b 13
O R . T
1 | R] 1 T - H
n - i i T !] H et
m se ,nm...EL . ! - .ﬁ.
- [| . H r .
n : . + |
- & o
1] =N—
p .
1 H H 71T
:“.r T m _+., W 1]
1 - R B t —
. N yNERa ESREN
B o
] Lo 1] -
L+
- R
I
3
T .
- .]— H f : ki - fl
. I
i i| (S E asilEn O
] i u ..L iy H
¥ Y n
= - — 1 o1 LI W H
T janensus] (RANERR]
i smus| | +
I
BB |
e
i 1
é <
t T

3

il I

RN =IO N

_67.&

TT_ ..nA M

e
& ERiE
] 177]
LB pER
+] .q RN
s 10 & DU
- sanaa:
sng MA n
-

iy

T
o

-2 R
we wox § auxt pggl-30ch 8T lawed agp] gore @32] ~b awnidd] vonso
- t mw T ! e
‘rﬁ\ ,.- . .- . -

3
-1 -
-

6502

BIBLTOGRAPHY

MCS6500 MICROCOMPUTER FAMILY PROGRAMMING MANUAL, MOS
Technology, Norristown, PA, 1976

Rodnay Zaks, PROGRAMMING THE 6502, SYBEX, 1979

Lance A, Leventhal, 6502 ASSEMBLY LANGUAGE PROGRAMMING,
OSBORNE/McGraw-Hill, 1979

NUMBER SYSTEMS

Donald Knuth, THE ART OF COMPUTER PROGRAMMING. VOLUME TIII;
SORTING AND SEARCHING, Addison-Wesley, 1978

0st
E.D. Morris, "TOKENS", MICRO, August 1979, p. 20
S.R. Murphy, "Some Useful Memory locations for OSI BASIC in
ROM" , MICRO, November 1979, pp.18:9-18:10
Alvin L. Hooper, Letter in response to Jim Butterfield's
"Inside PET BASIC" article (listed below), MICRO, July 1979,
pp. 14:15-14:16

OTHER BASICS

Virginia Brady, "Data Statement Generator”, MICRO, December
1979, ppl9:5-19:7

Jim Butterfield, "BASIC MEMCRY MAP (Page 0)", COMPUTE,
January/February, 1980, Issue 2, p. 41

Jim Butterfield, "Inside PET BASIC", MICRO, December
1978-January 1979, pp.8:39-8:41

Gary A. Creighton, "A Partial List of PET Scratch Pad
Memory", MICRO, August-September 1978, Back Cover

William F. Leubbert, "what's Where in the APPLE", MICRO,
August 1979, pp. 15:29-15:36

Gregory Yob, "Personal Electronic Transactions", CREATIVE

COMPUTING, September 1979 5, # 9, pp. 178-182 and October
1679, 5, #10, pp.180-183

-B.1-

INDEX

23-Bit Routine

6502 Cross~Reference
Aardvark Technical Services
ACIA

Array Variables
ASCIT

Author

Autoload tapes

Bell

Binary Representation
Bombs

Brady, Virginia
Break

C/W/M?

CHRGET

CLEAR

Coldstart

Colon

CRT Simulator

Data Statements
Decimal to Hex
Decimal Finder
Editing BASIC

Entry Points

Error Messaqges

Files

Formatting

FPA

Function

Garbage Collector or GC
Graphics Characters
Hexadecimal Code
INPUT

Input Buffer
Interpreter

INVAR

Keyboard

LOAD

Long Lines

Memory Locations
Message Printer
Microsoft

ML

ML Dump

Multiple Programs
Mur phy, Stan

NEXT

No-LF INPUT

Numer ic Arrays
‘Numer ic Representation

I.l

5.2,16.1

>
~J
N

B s W o U e g
-
~J)
.
(%)

-
I
0]
[]
[

¢ 0 e Je o
- .~
[JERS |

e e

(5L B) }

~

L]

[

[4

-
N
.
N

N® ¢ o o o o o o
-
N
.
o

i = W ANNH B NN OO

o’\. . L L] . ® . * L * *
- -

[

e o o
-
oo
.
—

~J *
B NS e
. . e w
o
e
N

HENMDAPDNODP SR WNNDNNNDHEFLONNODNOHONDADPNONNNODBDNNBDNBNNIDNOENNONOEFONS
~
.
wn

. L[] L[] L] L[] N e .

DN Wi e
-
N
.
>

4.6,7.1,7.2

Numeric Variables
Other BASICs
OUTVAR

Page Zero

Pointer

Program Security
RESTORE

Retrieving Programs

Richardson, R.M,
RND

ROM Monitor

ROM Routines

RUN

SAVE

Screen Clear
Security

Singlke Variables
Stack

Statement Storage
String Arrays
String Variables
Tapes

Tokens

USR

Variable Storage
VARPTR

View

Warmstart
Workspace

XMON

-1.2-

OFHNNSNFUOHENEHEFEEHEDEDNNININSNSNSIYODONO =N D

e o o & & o s ° & o o s o Jeo & s o o+

HFWNAWDBFNWATNTNNNDWARANHUNILS DHWHWNe

~] e

o

1

’7.4
113
'2.5'2.6
1

(A2.1
'2.5'2.6
'2.4'2.6
'4.3'Al.1

'2.4,2.6,401'7.1'705

10 REM BASIC STORAGE DEHO0
20 LET X=23:PRINT X

30 INPUT YESSIRREE:PRINTYE
40 LET AS="ABC":PRINTAS

50 INPUT 3$:PRINTBS

50 DIM A(3,2)

70 FQR I=1TO3:FQR J=1T02

80 A(I,J)=(J<I):PRINTA(I,J);
90 NEXT J,1

100 END

[ppinter] [line 1 [pam;
E— gty

ASCII mﬁ_ @

01 23 4546 78 9 ABCUDEF

0300 @0 1203, 0800 B 20 42 4153 49 43 20 53 54 4F

0310 52 41 47 45 20 44 45 4D &F @D 22 03 14 00{8F 20
0320 se[EH 32 33 3a[57)20 58 @) 3003 JE,00[E4 20 59
0330 45 53 53 49 52 52 45 45 3a[37 52 450D 50 03 28
0340 QofE7)20 41 24[AH 22 41 42 43 22 A [P 41 22D
0350 5D 03 32,00 [88 20 42 24 3a B7 42 24D 03 ¢
0360 P@No 41 28 33 2¢ 32 29@D 78 03 45 00 Y 20
0370 4oF@ [33 Al 20 g1 A %@8 03
0380 50 00 41 Nm 49 2¢ 4n 29[EE) 28 4A[EC] 49 29 no
0390 41 28 49 2C 4a 29 38(@)A2 03 5a 00[EH 20 4a
oo 49@as 03 64 00 [BAGD 00 00 58 00 85 38 00 00
0380 8E 40 E4 00 41 80 03 47 03 00 07 F9
030 WPMu 0 muoowﬂ%ﬁo mwbowmwmmw@ﬂbp
0300 39 0 03 00 03,00 04, 00 00700 00 00 00 00 00 00
0350 0000 00 00_00 0300 00_00 00 00 00 00 00 00 81
03F0 80 00 00 81 80 00 00 00 00 00 00 00 00 00 00 00
0400 00 00 00 S1 80 00 00 24 24 24 24 24 24 24 24 24

01 2
IFF0 24 24 24

®
i%%wm

0000 N4C 74 A2

24 24

N
4,06
3|4

4C C3 !

A B C
59 45 2D
Y &

N O

4

o r o

L7 s¥9 als ¢
AE C1 AF 4C 88 AE

0010 38 FF FF

0020 97 41 28

24_3A

3A 00 49 53 54 00

49 2C

38 00 3B 00 00 00

0030 <00 00 00

00 00

00 00 00 00 00 00

00

0040 e

FF FF

FF FF FF FF FB F7 FF

wm FF FF
oomo \FF FF FF

FF FF

FF FF FF FF 22 22

0060 01 00 00
0070 FF 92 Al
0080 04 F9 1F
0090 03 1A 00
00A0 03 4C 02

00BC 20 00 00

04 00
47 B9
00 20
49 00
00 07
80 00

00CO E6 C4 AD 16 00

00 06 92 Al FF FF

44

FF

00 FF 01 03 AA 03 CE

00 FF

64 FF 64 00 A7 03
04 03 FF 00 00 BC
1E FD 00 A8 03 06

00

00

92

00 92 Al 98 Al E6 C3

BO OA C9 20 FO EF

38

00Do
00EQ
O0F0
0100
0110

FF FF FF

20 31 30
FF FF 7F

8 E9 DO 60 80

FF FF

40 D7 FF FF FF

30 00
FF FF

52 FF FF 80 00 DC
20 FF FF FF FF FF
FF FF FF FF FF FF
30 FF FF FF FF FF

00
FF

133

FF

BA EO 06 00 22 0D BA

40 D7

\§&§?

\ &

